Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Immunol ; 11: 1715, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849605

RESUMEN

Monocytes can develop immunological memory, a functional characteristic widely recognized as innate immune training, to distinguish it from memory in adaptive immune cells. Upon a secondary immune challenge, either homologous or heterologous, trained monocytes/macrophages exhibit a more robust production of pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, than untrained monocytes. Candida albicans, ß-glucan, and BCG are all inducers of monocyte training and recent metabolic profiling analyses have revealed that training induction is dependent on glycolysis, glutaminolysis, and the cholesterol synthesis pathway, along with fumarate accumulation; interestingly, fumarate itself can induce training. Since fumarate is produced by the tricarboxylic acid (TCA) cycle within mitochondria, we asked whether extra-mitochondrial fumarate has an effect on mitochondrial function. Results showed that the addition of fumarate to monocytes induces mitochondrial Ca2+ uptake, fusion, and increased membrane potential (Δψm), while mitochondrial cristae became closer to each other, suggesting that immediate (from minutes to hours) mitochondrial activation plays a role in the induction phase of innate immune training of monocytes. To establish whether fumarate induces similar mitochondrial changes in vivo in a multicellular organism, effects of fumarate supplementation were tested in the nematode worm Caenorhabditis elegans. This induced mitochondrial fusion in both muscle and intestinal cells and also increased resistance to infection of the pharynx with E. coli. Together, these findings contribute to defining a mitochondrial signature associated with the induction of innate immune training by fumarate treatment, and to the understanding of whole organism infection resistance.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Infecciones por Escherichia coli/prevención & control , Escherichia coli/patogenicidad , Fumaratos/farmacología , Inmunidad Innata/efectos de los fármacos , Memoria Inmunológica/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Monocitos/efectos de los fármacos , Animales , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Escherichia coli/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Interacciones Huésped-Patógeno , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/inmunología , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo
2.
Neurotoxicology ; 41: 28-43, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24406377

RESUMEN

Exposures to high levels of environmental selenium have been associated with motor neuron disease in both animals and humans and high levels of selenite have been identified in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). We have shown previously that exposures to high levels of sodium selenite in the environment of Caenorhabditis elegans adult animals can induce neurodegeneration and cell loss resulting in motor deficits and death and that this is at least partially caused by a reduction in cholinergic signaling across the neuromuscular junction. Here we provide evidence that reduction in insulin/insulin-like (IIS) signaling alters response to high dose levels of environmental selenium which in turn can regulate the IIS pathway. Most specifically we show that nuclear localization and thus activation of the DAF-16/forkhead box transcription factor occurs in response to selenium exposure although this was not observed in motor neurons of the ventral cord. Yet, tissue specific expression and generalized overexpression of DAF-16 can partially rescue the neurodegenerative and behavioral deficits observed with high dose selenium exposures in not only the cholinergic, but also the GABAergic motor neurons. In addition, two modifiers of IIS signaling, PTEN (phosphatase and tensin homolog, deleted on chromosome 10) and PINK1 (PTEN-induced putative kinase 1) are required for the cellular antioxidant reduced glutathione to mitigate the selenium-induced movement deficits. Studies have suggested that environmental exposures can lead to ALS or other neurological diseases and this model of selenium-induced neurodegeneration developed in a genetically tractable organism provides a tool for examining the combined roles of genetics and environment in the neuro-pathologic disease process.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Proteínas Serina-Treonina Quinasas/metabolismo , Selenio/toxicidad , Transducción de Señal/efectos de los fármacos , Somatomedinas/metabolismo , Oligoelementos/toxicidad , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Factores de Transcripción Forkhead , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Movimiento/efectos de los fármacos , Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Somatomedinas/genética , Factores de Tiempo , Factores de Transcripción/genética
3.
Mech Ageing Dev ; 133(5): 282-90, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22445852

RESUMEN

Iron-catalyzed generation of free radicals leads to molecular damage in vivo, and has been proposed to contribute to organismal ageing. Here we investigate the role of free iron in ageing in the nematode Caenorhabditis elegans. Media supplementation with Fe(III) increased free iron levels in vivo, as detected by continuous-wave electron paramagnetic resonance spectroscopy and elevated expression of the iron-sensitive reporter transgene pftn-1::gfp. Increased free iron levels caused elevated levels of protein oxidation and hypersensitivity to tert-butyl hydroperoxide (t-BOOH) given 9 mM Fe(III) or greater, but 15 mM Fe(III) or greater was required to reduce lifespan. Treatment with either an iron chelator (deferoxamine) or over-expression of ftn-1, encoding the iron sequestering protein ferritin, increased resistance to t-BOOH and, in the latter case, reduced protein oxidation, but did not increase lifespan. Expression of ftn-1 is greatly increased in long-lived daf-2 insulin/IGF-1 receptor mutants. In this context, deletion of ftn-1 decreased t-BOOH resistance, but enhanced both daf-2 mutant longevity and constitutive dauer larva formation, suggesting an effect of ferritin on signaling. These results show that high levels of iron can increase molecular damage and reduce lifespan, but overall suggest that iron levels within the normal physiological range do not promote ageing in C. elegans.


Asunto(s)
Envejecimiento/metabolismo , Caenorhabditis elegans/fisiología , Hierro/fisiología , Estrés Oxidativo/fisiología , Envejecimiento/efectos de los fármacos , Animales , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Deferoxamina/farmacología , Ferritinas/biosíntesis , Hierro/farmacología , Longevidad/efectos de los fármacos , Longevidad/genética , Mutación , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Sideróforos/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , terc-Butilhidroperóxido/toxicidad
4.
J Gerontol A Biol Sci Med Sci ; 63(3): 242-52, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18375873

RESUMEN

In Caenorhabditis elegans, several manipulations that affect nutrition slow development, reduce fecundity, and increase life span. These are viewed as dietary restriction (DR) and include culture in semidefined, nutrient-rich liquid medium that is axenic (i.e., there is no microbial food source). Here we describe convenient ways to exert DR by culture on agar plates containing axenic medium. We used these to explore whether effects of axenic culture really reflect DR. Our results imply that major nutrient components of axenic medium, and overall caloric content, are not limiting for life span. However, adding growth-arrested Escherichia coli as an additional food source rescued the effects of axenic culture. We then sought to identify the component of E. coli that is critical for normal C. elegans nutrition using add-back experiments. Our results suggest that C. elegans has a nutritional requirement for live, metabolically active microbes or, possibly, an unidentified, heat-labile, nonsoluble component present in live microbes.


Asunto(s)
Caenorhabditis elegans/fisiología , Restricción Calórica , Escherichia coli/fisiología , Conducta Alimentaria/fisiología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Daucus carota/química , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Calor , Longevidad , Viabilidad Microbiana , Necesidades Nutricionales , Pisum sativum/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Reproducción/efectos de los fármacos , Factores de Tiempo
5.
Physiol Genomics ; 27(3): 187-200, 2006 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-16882887

RESUMEN

Caloric restriction (CR) increases healthy life span in a range of organisms. The underlying mechanisms are not understood but appear to include changes in gene expression, protein function, and metabolism. Recent studies demonstrate that acute CR alters mortality rates within days in flies. Multitissue transcriptional changes and concomitant metabolic responses to acute CR have not been described. We generated whole genome RNA transcript profiles in liver, skeletal muscle, colon, and hypothalamus and simultaneously measured plasma metabolites using proton nuclear magnetic resonance in mice subjected to acute CR. Liver and muscle showed increased gene expressions associated with fatty acid metabolism and a reduction in those involved in hepatic lipid biosynthesis. Glucogenic amino acids increased in plasma, and gene expression for hepatic gluconeogenesis was enhanced. Increased expression of genes for hormone-mediated signaling and decreased expression of genes involved in protein binding and development occurred in hypothalamus. Cell proliferation genes were decreased and cellular transport genes increased in colon. Acute CR captured many, but not all, hepatic transcriptional changes of long-term CR. Our findings demonstrate a clear transcriptional response across multiple tissues during acute CR, with congruent plasma metabolite changes. Liver and muscle switched gene expression away from energetically expensive biosynthetic processes toward energy conservation and utilization processes, including fatty acid metabolism and gluconeogenesis. Both muscle and colon switched gene expression away from cellular proliferation. Mice undergoing acute CR rapidly adopt many transcriptional and metabolic changes of long-term CR, suggesting that the beneficial effects of CR may require only a short-term reduction in caloric intake.


Asunto(s)
Restricción Calórica , Colon/metabolismo , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Transcripción Genética , Animales , Análisis Químico de la Sangre , Regulación hacia Abajo , Ingestión de Energía , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Organismos Libres de Patógenos Específicos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA