Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 418: 135955, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36963139

RESUMEN

Functional factors show additive effects in the same nutraceutical food. In this study, a core-shell structure based on soy protein isolate (SPI) and pectin was constructed as a delivery system for vitamins C and E under neutral (pH 7.0) and acidic environment (pH 4.0). The SPI-vitamin-pectin complex formed at pH 4.0 showed larger particle size, higher turbidity, lower fluorescence intensity, and higher vitamin E encapsulation efficiency than those formed at pH 7.0. Also, the addition of vitamin C significantly enhanced the vitamin E encapsulation efficiency in the particles. Furthermore, the antioxidant properties of DPPH, ABTS, and hydroxyl radicals were increased by the addition of vitamin C, maximum values of 77%, 82%, and 65%, suggesting that vitamins C and E have additive antioxidant effects. These findings proposed a simple, structured protein-polysaccharide-based food-grade delivery system, which could serve as the basis for the design of products having multiple functional factors.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Pectinas/química , Proteínas de Soja/química , Vitamina E , Vitaminas
2.
Ultrason Sonochem ; 90: 106172, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162220

RESUMEN

The effects of the preparation method (mixing, chemical polymerization, or ultrasound treatment) on the structure and functional properties of soy protein isolate-(-)-epigallocatechin-3-gallate (SPI-EGCG) complexes were examined. The mixing treated SPI-EGCG samples (M-SE) were non-covalently linked, while the chemical polymerization and ultrasound treated SPI-EGCG samples (C-SE and U-SE, respectively) were bound covalently. The covalent binding of EGCG with protein improved the molecular weight and changed the structures of the SPI by decreasing the α-helix content. Moreover, U-SE samples had the lowest particle size (188.70 ± 33.40 nm), the highest zeta potential (-27.82 ± 0.53 mV), and the highest polyphenol binding rate (59.84 ± 2.34 %) compared with mixing and chemical polymerization-treated samples. Furthermore, adding EGCG enhanced the antioxidant activity of SPI and U-SE revealed the highest DPPH (84.84 ± 1.34 %) and ABTS (88.89 ± 1.23 %) values. In conclusion, the SPI-EGCG complexes prepared by ultrasound formed a more stable composite system with stronger antioxidant capacity, indicating that ultrasound technology may have potential applications in the preparation of protein-polyphenol complexes.


Asunto(s)
Catequina , Proteínas de Soja , Proteínas de Soja/química , Polifenoles/análisis , Polimerizacion , Catequina/química , Antioxidantes/química
3.
J Sci Food Agric ; 102(11): 4830-4842, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35229290

RESUMEN

BACKGROUND: The emulsifying, antioxidant and foaming properties of soy protein isolate hydrolysates (SPH) can be improved by the addition of gum arabic (GA). We investigated the effects of different hydrolysis conditions on the complexation of SPH and GA, and the effects of the complex on the properties of emulsions. RESULTS: Fluorescence spectroscopy showed that the addition of GA had a stronger effect on bromelain and pepsin hydrolysates than trypsin hydrolysate, and therefore had a higher binding constant (KA ) and a larger number of binding sites (n). The addition of GA could also improve protein solubility and emulsifying ability. The emulsions prepared with complexes, especially the complex of GA and SPH obtained by pepsin hydrolysis for 3 h, had a high absolute charge value, uniform particle size distribution, stable morphology, and good storage stability. After storage, the emulsification index (CI) of the emulsion only increased to 23.08%; its 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity was 24.37 ± 1.22% and its 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+ ) free radical scavenging activity was largely retained. CONCLUSION: During long-term storage, pepsin-treated protein (especially protein treated for 3 h) and GA can form a stable emulsion with antioxidant properties. This work provides new ideas for the development of natural and safe emulsifiers that have antioxidant properties and can be stored long-term and used in the food industry. © 2022 Society of Chemical Industry.


Asunto(s)
Acacia , Goma Arábiga , Antioxidantes , Emulsiones/química , Radicales Libres , Goma Arábiga/química , Hidrólisis , Pepsina A , Hidrolisados de Proteína/química , Proteínas de Soja , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA