Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 20(1): 77, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066385

RESUMEN

BACKGROUND: Geophytes possess specialized storage organs - bulbs, tubers, corms or rhizomes, which allow their survival during unfovarable periods and provide energy support for sprouting and sexual and vegetative reproduction. Bulbing and flowering of the geophyte depend on the combined effects of the internal and external factors, especially temperature and photoperiod. Many geophytes are extensively used in agriculture, but mechanisms of regulation of their flowering and bulbing are still unclear. RESULTS: Comparative morpho-physiological and transcriptome analyses and quantitative validation of gene expression shed light on the molecular regulation of the responses to vernalization in garlic, a typical bulbous plant. Long dark cold exposure of bulbs is a major cue for flowering and bulbing, and its interactions with the genetic makeup of the individual plant dictate the phenotypic expression during growth stage. Photoperiod signal is not involved in the initial nuclear and metabolic processes, but might play role in the later stages of development, flower stem elongation and bulbing. Vernalization for 12 weeks at 4 °C and planting in November resulted in flower initiation under short photoperiod in December-January, and early blooming and bulbing. In contrast, non-vernalized plants did not undergo meristem transition. Comparisons between vernalized and non-vernalized bulbs revealed ~ 14,000 differentially expressed genes. CONCLUSIONS: Low temperatures stimulate a large cascades of molecular mechanisms in garlic, and a variety of flowering pathways operate together for the benefit of meristem transition, annual life cycle and viable reproduction results.The circadian clock appears to play a central role in the transition of the meristem from vegetative to reproductive stage in bulbous plant, serving as integrator of the low-temperature signals and the expression of the genes associated with vernalization, photoperiod and meristem transition. The reserved photoperiodic pathway is integrated at an upstream point, possibly by the same receptors. Therefore, in bulb, low temperatures stimulate cascades of developmental mechanisms, and several genetic flowering pathways intermix to achieve successful sexual and vegetative reproduction.


Asunto(s)
Ritmo Circadiano , Frío , Flores/crecimiento & desarrollo , Ajo/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Fotoperiodo , Raíces de Plantas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Genomics ; 16: 12, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25609311

RESUMEN

BACKGROUND: Garlic is cultivated and consumed worldwide as a popular condiment and green vegetable with medicinal and neutraceutical properties. Garlic cultivars do not produce seeds, and therefore, this plant has not been the subject of either classical breeding or genetic studies. However, recent achievements in fertility restoration in a number of genotypes have led to flowering and seed production, thus enabling genetic studies and breeding in garlic. RESULTS: A transcriptome catalogue of fertile garlic was produced from multiplexed gene libraries, using RNA collected from various plant organs, including inflorescences and flowers. Over 32 million 250-bp paired-end reads were assembled into an extensive transcriptome of 240,000 contigs. An abundant transcriptome assembled separately from 102,000 highly expressed contigs was annotated and analyzed for gene ontology and metabolic pathways. Organ-specific analysis showed significant variation of gene expression between plant organs, with the highest number of specific reads in inflorescences and flowers. Analysis of the enriched biological processes and molecular functions revealed characteristic patterns for stress response, flower development and photosynthetic activity. Orthologues of key flowering genes were differentially expressed, not only in reproductive tissues, but also in leaves and bulbs, suggesting their role in flower-signal transduction and the bulbing process. More than 100 variants and isoforms of enzymes involved in organosulfur metabolism were differentially expressed and had organ-specific patterns. In addition to plant genes, viral RNA of at least four garlic viruses was detected, mostly in the roots and cloves, whereas only 1-4% of the reads were found in the foliage leaves. CONCLUSIONS: The de novo transcriptome of fertile garlic represents a new resource for research and breeding of this important crop, as well as for the development of effective molecular markers for useful traits, including fertility and seed production, resistance to pests and neutraceutical characteristics.


Asunto(s)
Ajo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Transcriptoma , Análisis por Conglomerados , Enzimas/metabolismo , Flexiviridae/patogenicidad , Flores/genética , Flores/metabolismo , Flores/virología , Ajo/metabolismo , Ajo/virología , Perfilación de la Expresión Génica , Biblioteca de Genes , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/virología , Semillas/genética , Semillas/metabolismo , Semillas/virología , Análisis de Secuencia de ARN , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA