Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2718: 1-10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37665451

RESUMEN

Mass spectrometry-based proteomics combining more than one protease in parallel facilitates the identification of more peptides and proteins than when a single protease is used. Trypsin cleaves proteins C-terminally to arginine and lysine, while its mirroring protease Tryp-N cleaves N-terminally to the same amino acids. Here, we combine trypsin and Tryp-N with the commercially available S-Trap columns, which purify protein samples and catalyze digestion. Comparison of trypsin or Tryp-N coupled with S-Trap columns demonstrates plasma and cell lysate proteins unique to one protease. We thus suggest the use of both proteases in a complementary manner to obtain deeper proteome coverage.


Asunto(s)
Péptido Hidrolasas , Proteoma , Proteolisis , Tripsina , Aminoácidos , Ligando de CD40
2.
Pest Manag Sci ; 78(12): 5071-5079, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36053804

RESUMEN

BACKGROUND: In addition to its role in the digestive system, the peritrophic membrane (PM) provides a physical barrier protecting the intestine from abrasion and against pathogens. Because of its sensitivity to RNA interference (RNAi), the notorious pest insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata), has become a model insect for functional studies. Previously, RNAi-mediated silencing of Mannosidase-Ia (ManIa), a key enzyme in the transition from high-mannose glycan moieties to paucimannose N-glycans, was shown to disrupt the transition from larva to pupa and the metamorphosis into adult beetles. While these effects at the organismal level were interesting in a pest control context, the effects at the organ or tissue level and also immune effects have not been investigated yet. To fill this knowledge gap, we performed an analysis of the midgut and PM in ManIa-silenced insects. RESULTS: As marked phenotype, the ManIaRNAi insects, the PM pore size was found to be decreased when compared to the control GFPRNAi insects. These smaller pores are related to the observation of thinner microvilli (Mv) on the epithelial cells of the midgut of ManIaRNAi insects. A midgut and PM proteome study and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis with a selection of marker genes was performed to characterize the midgut cells and understand their response to the silencing of ManIa. In agreement with the loss of ManIa activity, an accumulation of high-mannose N-glycans was observed in the ManIa-silenced insects. As a pathogen-associated molecular pattern (PAMP), the presence of these glycan structures could trigger the activation of the immune pathways. CONCLUSION: The observed decrease in PM pore size could be a response to prevent potential pathogens to access the midgut epithelium. This hypothesis is supported by the strong increase in transcription levels of the anti-fungal peptide drosomycin-like in ManIaRNAi insects, although further research is required to elucidate this possibility. The potential immune response in the midgut and the smaller pore size in the PM shed a light on the function of the PM as a physical barrier and provide evidence for the relation between the Mv and PM. © 2022 Society of Chemical Industry.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Interferencia de ARN , Solanum tuberosum/metabolismo , Manosidasas/genética , Manosidasas/metabolismo , Manosidasas/farmacología , Manosa/metabolismo , Manía , Sistema Digestivo/metabolismo , Larva/genética , Insectos/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología
3.
Sci Rep ; 9(1): 4787, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886217

RESUMEN

Pollens are well-known triggers of respiratory allergies and asthma. The pollen burden in today's ambient air is constantly increasing due to rising climate change and air pollution. How pollens interact with the respiratory mucosa remains largely unknown due to a lack of representative model systems. We here demonstrate how pollen proteases of Kentucky bluegrass, white birch and hazel selectively destroy integrity and anchorage of columnar respiratory epithelial cells, but not of basal cells, in both ex vivo respiratory mucosal explants and in vitro primary equine respiratory epithelial cells (EREC). In turn, this pollen protease-induced damage to respiratory epithelial cell anchorage resulted in increased infection by the host-specific and ancestral alphaherpesvirus equine herpesvirus type 1 (EHV1). Pollen proteases of all three plant species were characterized by zymography and those of white birch were fully identified for the first time as serine proteases of the subtilase family and meiotic prophase aminopeptidase 1 using mass spectrometry-based proteomics. Together, our findings demonstrate that pollen proteases selectively and irreversibly damage integrity and anchorage of columnar respiratory epithelial cells. In turn, alphaherpesviruses benefit from this partial loss-of-barrier function, resulting in increased infection of the respiratory epithelium.


Asunto(s)
Infecciones por Herpesviridae/etiología , Proteínas de Plantas/metabolismo , Polen/toxicidad , Mucosa Respiratoria/virología , Serina Proteasas/metabolismo , Animales , Betula , Células Cultivadas , Corylus , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/patogenicidad , Caballos , Poaceae , Polen/enzimología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
4.
Plant Biotechnol J ; 12(7): 971-83, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24852175

RESUMEN

Small peptides play important roles in the signalling cascades that steer plant growth, development and defence, and often crosstalk with hormonal signalling. Thereby, they also modulate metabolism, including the production of bioactive molecules that are of high interest for human applications. Yew species (Taxus spp.) produce diterpenes such as the powerful anticancer agent paclitaxel, the biosynthesis of which can be stimulated by the hormone jasmonate, both in whole plants and cell suspension cultures. Here, we identified Taximin, as a gene encoding a hitherto unreported, plant-specific, small, cysteine-rich signalling peptide, through a transcriptome survey of jasmonate-elicited T. baccata suspension cells grown in two-media cultures. Taximin expression increased in a coordinated manner with that of paclitaxel biosynthesis genes. Tagged Taximin peptides were shown to enter the secretory system and localize to the plasma membrane. In agreement with this, the exogenous application of synthetic Taximin peptide variants could transiently modulate the biosynthesis of taxanes in T. baccata cell suspension cultures. Importantly, the Taximin peptide is widely conserved in the higher plant kingdom with a high degree of sequence conservation. Accordingly, Taximin overexpression could stimulate the production of nicotinic alkaloids in Nicotiana tabacum hairy root cultures in a synergistic manner with jasmonates. In contrast, no pronounced effects of Taximin overexpression on the specialized metabolism in Medicago truncatula roots were observed. This study increases our understanding of the regulation of Taxus diterpene biosynthesis in particular and plant metabolism in general. Ultimately, Taximin might increase the practical potential of metabolic engineering of medicinal plants.


Asunto(s)
Péptidos/genética , Proteínas de Plantas/genética , Taxoides/metabolismo , Taxus/genética , Secuencia de Aminoácidos , Secuencia Conservada , Perfilación de la Expresión Génica , Medicago truncatula/genética , Medicago truncatula/metabolismo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Péptidos/aislamiento & purificación , Péptidos/fisiología , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo , Taxoides/química , Taxus/química , Nicotiana/genética , Nicotiana/metabolismo , Triterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA