Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439420

RESUMEN

Nowadays, numerous biomedical studies performed on natural compounds and plant extracts aim to obtain highly selective pharmacological activities without unwanted toxic effects. In the big world of medicinal plants, Usnea barbata (L) F.H. Wigg (U. barbata) and usnic acid (UA) are well-known for their therapeutical properties. One of the most studied properties is their cytotoxicity on various tumor cells. This work aims to evaluate their cytotoxic potential on normal blood cells. Three dry U. barbata extracts in various solvents: ethyl acetate (UBEA), acetone (UBA), and ethanol (UBE) were prepared. From UBEA we isolated usnic acid with high purity by semipreparative chromatography. Then, UA, UBA, and UBE dissolved in 1% dimethyl sulfoxide (DMSO) and diluted in four concentrations were tested for their toxicity on human blood cells. The blood samples were collected from a healthy non-smoker donor; the obtained blood cell cultures were treated with the tested samples. After 24 h, the cytotoxic effect was analyzed through the mechanisms that can cause cell death: early and late apoptosis, caspase 3/7 activity, nuclear apoptosis, autophagy, reactive oxygen species (ROS) level and DNA damage. Generally, the cytotoxic effect was directly proportional to the increase of concentrations, usnic acid inducing the most significant response. At high concentrations, usnic acid and U. barbata extracts induced apoptosis and DNA damage in human blood cells, increasing ROS levels. Our study reveals the importance of prior natural products toxicity evaluation on normal cells to anticipate their limits and benefits as potential anticancer drugs.

2.
Molecules ; 25(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316674

RESUMEN

The secondary metabolites of lichens have proven to be promising sources of anticancer drugs; one of the most important of these is usnic acid, which is a phenolic compound with dibenzofuran structure that is responsible for the numerous biological actions of lichens of genus Usnea. As a result, in this study, we related to this phenolic secondary metabolite. The aim of the present study is the evaluation of the cytotoxic activity of Usnea barbata (L.) F. H. Wigg dry acetone extract (UBE). In advance, the usnic acid content was determined in various extracts of Usnea barbata (L.) F. H. Wigg: the liquid extracts were found in water, ethanol, acetone, and the dry acetone extract; the highest usnic acid quantity was found in the dry acetone extract. First, the cytotoxic action of UBE was assessed using Brine Shrimp Lethality (BSL) test; a significant lethal effect was obtained after 24 h of treatment at high used concentrations of UBE, and it was quantified by the high mortality rate of the Artemia salina (L.) larvae. Secondly, in vitro cytotoxicity of UBE was evaluated on human tongue squamous cells carcinoma, using CAL 27 (ATCC® CRL-2095™) cell line. The most intense cytotoxic effect of UBE on CAL 27 cells was registered after 24 h; this response is directly proportional with the tested UBE concentrations. The obtained results have been reported regarding usnic acid content of UBE, and the data show that CAL 27 cells death was induced by apoptosis and high oxidative stress.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Usnea/química , Animales , Antineoplásicos/química , Productos Biológicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos
3.
Ecotoxicol Environ Saf ; 181: 345-352, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31202935

RESUMEN

Nanomaterials are being used increasingly in various areas such as electronic devices manufacture, medicine, mechanical devices production, and even food industry. Therefore, the evaluation of their toxicity is mandatory. Graphene oxide (GO) has been shown to have both positive as well as negative impact on different crop plants, depending on species, dose, and duration of exposure. The current study evaluated the impact of GO sheets at different concentrations (500, 1000 and 2000 mg/L) on physiological, biochemical and genetic levels to determine the possible toxic action. Wheat caryopses were treated with GO for 48 h and 7 days. The germination rate and roots elongation decreased in a dose-response manner, except the sample treated with GO at a concentration of 1000 mg/L. Mitotic index has ascendant trend; its increase may be due to the accumulation of prophases GO induced significant accumulation of the cells with aberrations, their presence suggests a clastogenic/aneugenic effect of these carbon nanomaterials. Regarding enzymatic and non-enzymatic antioxidant system defence, the activity varied depending on the dose of GO. Thus, chlorophyll a pigments content decreased significantly at high dose (2000 mg/L), while the carotenoid pigments had lower content at 500 mg/L of GO, and no statistical difference encountered in case of chlorophyll b amount. The antioxidant enzyme activity (CAT, POD, and SOD) was higher at low dose of GO, indicating the presence of oxidative stress generated as a response to the GO treatment. Also, the free radical scavenging activity of the polyphenolic compounds was enhanced upon GO exposure. The GO accumulation has been identified by transmission electron microscopy only at plumules level, near the intercellular space.


Asunto(s)
Grafito/toxicidad , Nanoestructuras/toxicidad , Triticum/efectos de los fármacos , Antioxidantes/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Germinación/efectos de los fármacos , Estrés Oxidativo , Óxidos/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/metabolismo , Triticum/enzimología , Triticum/crecimiento & desarrollo , Triticum/metabolismo
4.
Phytochem Anal ; 30(1): 34-45, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30155925

RESUMEN

INTRODUCTION: Plant species of Verbascum genus have been intensively investigated in the last decades but most studies focused on evaluation of their biological activities; there are only few studies dealing with their chemical characterisation. OBJECTIVE: Detailed investigation of the qualitative and quantitative chemical composition, antioxidant and cytogenotoxic activities of a previously non-studied Verbascum species (V. ovalifolium Donn ex Sims). METHODS: Qualitative analysis of secondary metabolites was performed by HPLC-DAD-ESI-Q-TOF-MS/MS, whereas quantitative data were obtained through HPLC-DAD. Antioxidant activity was evaluated using in vitro assays; cytotoxic and genotoxic effects were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) and comet assays, respectively. RESULTS: More than 50 secondary bioactive metabolites belonging to various classes (iridoids, phenylethanoids, flavonoids, phenolic acids) were detected in the methanolic extract of V. ovalifolium and its fractions. The fragmentation pathways of acylated catalpol-type iridoid diglycosides are thoughtfully described herein. The extracts showed good free radical scavenging and ferric ion reducing properties correlated with phenolic, flavonoid, chlorogenic acid and verbascoside contents. Moreover, 24 h treatment of SK-MEL-2 cells with V. ovalifolium extracts produced significant changes in terms of tumour cell viability. The crude extract and the ethyl acetate fraction showed no important signs of cytogenotoxicity in non-tumour cells. CONCLUSION: The performed phytochemical and biological analyses contribute to the preclinical knowledge about V. ovalifolium and they could help exploiting it in novel herbal medicinal products.


Asunto(s)
Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Mutágenos/toxicidad , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Verbascum/química , Animales , Línea Celular , Línea Celular Tumoral , Ensayo Cometa , Cricetulus , Humanos , Límite de Detección , Metanol/química , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA