Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lancet ; 397(10277): 892-901, 2021 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676628

RESUMEN

BACKGROUND: Covalent Bruton's tyrosine kinase (BTK) inhibitors are efficacious in multiple B-cell malignancies, but patients discontinue these agents due to resistance and intolerance. We evaluated the safety and efficacy of pirtobrutinib (working name; formerly known as LOXO-305), a highly selective, reversible BTK inhibitor, in these patients. METHODS: Patients with previously treated B-cell malignancies were enrolled in a first-in-human, multicentre, open-label, phase 1/2 trial of the BTK inhibitor pirtobrutinib. The primary endpoint was the maximum tolerated dose (phase 1) and overall response rate (ORR; phase 2). This trial is registered with ClinicalTrials.gov, NCT03740529. FINDINGS: 323 patients were treated with pirtobrutinib across seven dose levels (25 mg, 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, and 300 mg once per day) with linear dose-proportional exposures. No dose-limiting toxicities were observed and the maximum tolerated dose was not reached. The recommended phase 2 dose was 200 mg daily. Adverse events in at least 10% of 323 patients were fatigue (65 [20%]), diarrhoea (55 [17%]), and contusion (42 [13%]). The most common adverse event of grade 3 or higher was neutropenia (32 [10%]). There was no correlation between pirtobrutinib exposure and the frequency of grade 3 treatment-related adverse events. Grade 3 atrial fibrillation or flutter was not observed, and grade 3 haemorrhage was observed in one patient in the setting of mechanical trauma. Five (1%) patients discontinued treatment due to a treatment-related adverse event. In 121 efficacy evaluable patients with chronic lymphocytic leukaemia (CLL) or small lymphocytic lymphoma (SLL) treated with a previous covalent BTK inhibitor (median previous lines of treatment 4), the ORR with pirtobrutinib was 62% (95% CI 53-71). The ORR was similar in CLL patients with previous covalent BTK inhibitor resistance (53 [67%] of 79), covalent BTK inhibitor intolerance (22 [52%] of 42), BTK C481-mutant (17 [71%] of 24) and BTK wild-type (43 [66%] of 65) disease. In 52 efficacy evaluable patients with mantle cell lymphoma (MCL) previously treated with covalent BTK inhibitors, the ORR was 52% (95% CI 38-66). Of 117 patients with CLL, SLL, or MCL who responded, all but eight remain progression-free to date. INTERPRETATION: Pirtobrutinib was safe and active in multiple B-cell malignancies, including patients previously treated with covalent BTK inhibitors. Pirtobrutinib might address a growing unmet need for alternative therapies for these patients. FUNDING: Loxo Oncology.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células del Manto/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Linfoma de Células B/patología , Linfoma de Células del Manto/patología , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Resultado del Tratamiento
2.
Clin Cancer Res ; 26(23): 6387-6398, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32928793

RESUMEN

PURPOSE: In search of novel strategies to improve the outcome of advanced prostate cancer, we considered that prostate cancer cells rearrange iron homeostasis, favoring iron uptake and proliferation. We exploited this adaptation by exposing prostate cancer preclinical models to high-dose iron to induce toxicity and disrupt adaptation to androgen starvation. EXPERIMENTAL DESIGN: We analyzed markers of cell viability and mechanisms underlying iron toxicity in androgen receptor-positive VCaP and LNCaP, castration-resistant DU-145 and PC-3, and murine TRAMP-C2 cells treated with iron and/or the antiandrogen bicalutamide. We validated the results in vivo in VCaP and PC-3 xenografts and in TRAMP-C2 injected mice treated with iron and/or bicalutamide. RESULTS: Iron was toxic for all prostate cancer cells. In particular, VCaP, LNCaP, and TRAMP-C2 were highly iron sensitive. Toxicity was mediated by oxidative stress, which primarily affected lipids, promoting ferroptosis. In highly sensitive cells, iron additionally caused protein damage. High-basal iron content and oxidative status defined high iron sensitivity. Bicalutamide-iron combination exacerbated oxidative damage and cell death, triggering protein oxidation also in poorly iron-sensitive DU-145 and PC-3 cells.In vivo, iron reduced tumor growth in TRAMP-C2 and VCaP mice. In PC-3 xenografts, bicalutamide-iron combination caused protein oxidation and successfully impaired tumor expansion while single compounds were ineffective. Macrophages influenced body iron distribution but did not limit the iron effect on tumor expansion. CONCLUSIONS: Our models allow us to dissect the direct iron effect on cancer cells. We demonstrate the proof of principle that iron toxicity inhibits prostate cancer cell proliferation, proposing a novel tool to strengthen antiandrogen treatment efficacy.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Anilidas/farmacología , Apoptosis , Sinergismo Farmacológico , Hierro/farmacología , Nitrilos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Compuestos de Tosilo/farmacología , Animales , Proliferación Celular , Humanos , Masculino , Ratones , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancers (Basel) ; 12(4)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295216

RESUMEN

Adaptation to import iron for proliferation makes cancer cells potentially sensitive to iron toxicity. Iron loading impairs multiple myeloma (MM) cell proliferation and increases the efficacy of the proteasome inhibitor bortezomib. Here, we defined the mechanisms of iron toxicity in MM.1S, U266, H929, and OPM-2 MM cell lines, and validated this strategy in preclinical studies using Vk*MYC mice as MM model. High-dose ferric ammonium citrate triggered cell death in all cell lines tested, increasing malondialdehyde levels, the by-product of lipid peroxidation and index of ferroptosis. In addition, iron exposure caused dose-dependent accumulation of polyubiquitinated proteins in highly iron-sensitive MM.1S and H929 cells, suggesting that proteasome workload contributes to iron sensitivity. Accordingly, high iron concentrations inhibited the proteasomal chymotrypsin-like activity of 26S particles and of MM cellular extracts in vitro. In all MM cells, bortezomib-iron combination induced persistent lipid damage, exacerbated bortezomib-induced polyubiquitinated proteins accumulation, and triggered cell death more efficiently than individual treatments. In Vk*MYC mice, addition of iron dextran or ferric carboxymaltose to the bortezomib-melphalan-prednisone (VMP) regimen increased the therapeutic response and prolonged remission without causing evident toxicity. We conclude that iron loading interferes both with redox and protein homeostasis, a property that can be exploited to design novel combination strategies including iron supplementation, to increase the efficacy of current MM therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA