Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(22): 33872-33884, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35032262

RESUMEN

In this study, we investigated the effect of the homeopathic drug Zincum Metallicum (ZM) on zinc (Zn) toxicity in the plant species Lepidium sativum L. We focused on growth parameters, Zn uptake and numerous biochemical parameters. Seedlings were hydroponically subjected during 7 days to 0.05, 500, 1000, 1500 and 2000 µM Zn2+, in the absence or presence of 15ch or 9ch ZM. In the absence of ZM, Zn induced negative effect on growth especially at the dose of 2 mM. Zn induced also chlorosis, reduced total chlorophyll and/or carotenoid content and increased the level of malondialdehyde (MDA). Under Zn toxicity (500, 1000 and 1500 µM), the superoxide dismutase (SOD), catalase (CAT), gaiacol peroxidase (GPX) and glutathione reductase (GR) activities were increased or not significantly affected, while at 2000 µM Zn affected the activity of these enzymes. At the highest Zn level (2 mM), proline and total polyphenol and flavonoid contents were markedly increased in leaves and roots of L. sativum. Additionally, ZM supply considerably ameliorated the plant growth, photosynthetic pigment contents and increased non-enzymatic antioxidant molecules and enzymatic activities against Zn-induced oxidative stress. Our data suggest that homeopathic properties of ZM may be efficiently involved in the restriction of Zn-induced oxidative damages, by lowering Zn accumulation and translocation in the leaves and roots of Lepidium sativum L.


Asunto(s)
Antioxidantes , Lepidium sativum , Antioxidantes/metabolismo , Clorofila/farmacología , Malondialdehído/farmacología , Estrés Oxidativo , Raíces de Plantas/metabolismo , Plantones , Superóxido Dismutasa/metabolismo , Zinc/farmacología
2.
J Hazard Mater ; 171(1-3): 29-37, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19576686

RESUMEN

Soil degradation and salinization are two of the utmost threat affecting agricultural areas, derived from the increasing use of low quality water and inappropriate cultural practices. The problem of low productivity of saline soils may be ascribed not only to their salt toxicity or damage caused by excess amounts of soluble salts but also arising from the lack of organic matter and available mineral nutrients especially N, P, and K. Concerns about salinization risk and environmental quality and productivity of agro-ecosystems have emphasized the need to develop management practices that maintain soil resources. Composted municipal solid waste (MSW) was commonly used to enhance soil productivity in the agricultural lands and rebuild fertility. However, their application could be also a promising alternative to alleviate the adverse effects caused by soil salinization. MSW compost, with high organic matter content and low concentrations of inorganic and organic pollutants allow an improvement of physical, chemical and biochemical characteristics and constitute low cost soil recovery.


Asunto(s)
Agricultura/métodos , Sales (Química)/química , Contaminantes del Suelo/química , Administración de Residuos/métodos , Fertilizantes , Concentración de Iones de Hidrógeno , Metales/química , Nitrógeno/análisis , Compuestos Orgánicos/química , Fósforo/análisis , Potasio/análisis , Suelo , Temperatura
3.
Chemosphere ; 67(1): 72-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17126878

RESUMEN

One of the limits of Cd2+-phytoextraction is the high toxicity of this metal to plants. Growth restriction, chlorosis and necrosis are usually accompanied with a large disturbance of the uptake of essential elements. This work aims to study the effects of cadmium (Cd2+) on potassium (K+), calcium (Ca2+) and nitrogen (N) acquisition, and their consequences on growth in two halophytes species: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Seedlings were grown for 30 days in split-root conditions. One half of the root system was immersed in complete nutrient solution (Basal medium (B)) supplemented with 100 microM Cd2+, and the other half was immersed in a Cd2+-free medium, containing all nutrients (B/Cd plants) or deprived of potassium ((B-K)/Cd) or calcium ((B-Ca)/Cd) or nitrogen ((B-N)/Cd). Using this approach, we demonstrated that K+ and Ca2+ uptake was impaired in roots exposed to Cd2+. Concerning N, we noticed no indication of uptake inhibition by Cd2+. However, restriction of K+ uptake by roots was compensated by an increase in the K+-use efficiency, so that growth was not inhibited. Calcium uptake was strongly limited by Cd2. This inhibition was accompanied by a reduction in growth of ((B-Ca)/Cd) plants. Thus, we conclude that Cd2+ limits growth of both halophytes through restriction imposed on Ca2+ uptake. We suggest that the increase of Ca2+ availability in soils could improve the growth of both species in the presence of Cd2+. This would be essential for improving their utility for extraction of this metal by from salty contaminated soils.


Asunto(s)
Aizoaceae/efectos de los fármacos , Aizoaceae/metabolismo , Cadmio/toxicidad , Calcio/metabolismo , Mesembryanthemum/efectos de los fármacos , Nitrógeno/metabolismo , Potasio/metabolismo , Aizoaceae/crecimiento & desarrollo , Mesembryanthemum/crecimiento & desarrollo , Mesembryanthemum/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
4.
J Plant Physiol ; 162(10): 1133-40, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16255171

RESUMEN

Growth, cadmium accumulation and potassium and calcium status were studied in two halophytes from Aizoaceae family: Sesuvium portulacastrum and Mesembryanthemum crystallinum. After multiplication, the seedlings were cultivated on nutrient solution supplemented with NaCl (100mM) and CdCl2 (0, 50, 100, 200 and 300 microM). After 1 month of treatment, plants were harvested and the dry weight, as well as the Cd, K and Ca concentrations in tissues were determined. Results showed that S. portulacastrum, a perennial halophyte with slow growth, is significantly more tolerant to Cd than M. crystallinum, an annual plant. Cd severely inhibited Mesembryanthemum growth even at the lowest Cd concentration in culture medium (50 microM), and did not modify significantly that of Sesuvium. For both halophytes, Cd accumulation was significantly higher in the roots than in the shoots. However, Cd concentration reached 350-700 microg g(-1) DM in the shoots, values characteristic of Cd hyperaccumulator plants. The addition of Cd in the culture medium led to a disturbance of Ca and especially K nutrition, suggesting the possibility to improve plant growth and Cd phytoextraction of both halophytes by increasing nutrient availability in the culture medium.


Asunto(s)
Aizoaceae/efectos de los fármacos , Cloruro de Cadmio/farmacología , Mesembryanthemum/efectos de los fármacos , Aizoaceae/crecimiento & desarrollo , Aizoaceae/metabolismo , Medios de Cultivo , Mesembryanthemum/crecimiento & desarrollo , Mesembryanthemum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA