Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 209: 111949, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32659646

RESUMEN

Scientists are interested in biosynthesis of gold nanoparticles owing to their catalytic and biological features. In this research, the extract of Convolvulus fruticosus (C. fruticosus; CFE) extract was applied to synthesize spherical-like gold nanoparticles (CFE@AuNPs). As-prepared CFE@AuNPs was characterized by TEM, FE-SEM, XRD, FT-IR, EDS, UV-Vis and DLS analysis. Identification analysis revealed that the properties of as-prepared CFE@AuNPs with spherical morphology were homogeneous, regular, high dispersibility and low agglomeration. The particle size of biogenic gold nanoparticles (about 35 nm) was obtained using FE-SEM, TEM and DLS techniques. Photocatalytic experiment of CFE@AuNPs determined by degradation of basic violet 10 (BV10), basic blue 9 (BB9) and acid red 51 (AR51) pollutants with percent degradation of 94.3%, 90.2%, 85.4% under UV and 80.6%, 79.8%, 73.3% under visible light irradiation, respectively. As well as, as-prepared CFE@AuNPs illustrated as a significant inhibitory influence against ATCC strain for both gram-positive and gram-negative bacteria. Owing to the antibacterial results, CFE@AuNPs enhanced antibacterial activity against E. coli, A. baumannii, P. aeruginosa, S. aureus, K. pneumonia, P. mirabilis and E. faecalis with MIC of 0.075, 0.075, 0.075, 0.075, 0.15, 0.075 and 0.037 mg/ml, respectively. All in all, results of the findings showed that C. fruticosus capped gold nanoparticles can find applications in the various arena including biological and removal of toxic pollutants for water purification.


Asunto(s)
Antibacterianos/farmacología , Convolvulus/química , Oro/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Catálisis , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Análisis Espectral/métodos , Temperatura , Difracción de Rayos X
2.
J Hazard Mater ; 400: 123140, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32563904

RESUMEN

The present study introduces a simple, biocompatible and effective drug delivery system by using mesoporous nanocomposite-based platform. To achieve this goal, mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite (mFSH) was synthesized by sonochemical process in presence of strawberry fruit extract as capping agent (mFSH-SW). The impact of various factors such as sonication time (5, 15, 30 and 45 min), capping agent (cherry (CH), strawberry (SW), malus domestica (MD), andean blackberry (AB)), pH (10, 11 and 12) and sonication power (30, 60 and 80 W) were investigated to reach optimum condition. To reach high efficiency of drug loading, mFSH was grafted with 3-aminopropyl triethoxysilane (APTES). Uniform, regular and spherical morphology of nanocomposite were specified by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), vibrating sample magnetometer (VSM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), nitrogen adsorption/desorption isotherm and Fourier-transform infrared spectroscopy (FT-IR) techniques. The mean pore size, surface area, and pore volume of mFSH-SW were 63.2 m2 g-1, 14.1 nm and 0.24 cm3 g-1, respectively. Sulfasalazine (SLN) loading and release were carried out by various products. The functionalized mFSH-SW showed high adsorption capacity (approximately 59.1 %) for SLN that possesses amino functional groups. The results showed that 100 % of SLN-loaded nanocomposite could be released after 36 h at intestinal conditions (pH = 6.8). In addition, in-vitro and in-vivo toxicity investigations of product were performed with apoptosis/necrosis, XTT and pathology assay, respectively. All in all, unique properties of the nanocomposite including low toxicity, high drug loading, slow release and biodegradable showed that it can be used in biomedical sciences.


Asunto(s)
Durapatita , Fragaria , Nanocompuestos , Frutas , Extractos Vegetales , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier , Sulfasalazina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA