Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nutrients ; 15(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513526

RESUMEN

Rationale and Methods: Skeletal muscle derangements, potentially including mitochondrial dysfunction with altered mitochondrial dynamics and high reactive oxygen species (ROS) generation, may lead to protein catabolism and muscle wasting, resulting in low exercise capacity and reduced survival in chronic heart failure (CHF). We hypothesized that 8-week n-3-PUFA isocaloric partial dietary replacement (Fat = 5.5% total cal; EPA + DHA = 27% total fat) normalizes gastrocnemius muscle (GM) mitochondrial dynamics regulators, mitochondrial and tissue pro-oxidative changes, and catabolic derangements, resulting in preserved GM mass in rodent CHF [Myocardial infarction (MI)-induced CHF by coronary artery ligation, left-ventricular ejection fraction <50%]. Results: Compared to control animals (Sham), CHF had a higher GM mitochondrial fission-fusion protein ratio, with low ATP and high ROS production, pro-inflammatory changes, and low insulin signalling. n-3-PUFA normalized all mitochondrial derangements and the pro-oxidative state (oxidized to total glutathione ratio), associated with normalized GM cytokine profile, and enhanced muscle-anabolic insulin signalling and prevention of CHF-induced GM weight loss (all p < 0.05 vs. CHF and p = NS vs. S). Conclusions:n-3-PUFA isocaloric partial dietary replacement for 8 weeks normalizes CHF-induced derangements of muscle mitochondrial dynamics regulators, ROS production and function. n-3-PUFA mitochondrial effects result in preserved skeletal muscle mass, with potential to improve major patient outcomes in clinical settings.


Asunto(s)
Ácidos Grasos Omega-3 , Insuficiencia Cardíaca , Insulinas , Ratones , Animales , Ácidos Grasos Omega-3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Insuficiencia Cardíaca/tratamiento farmacológico , Dieta , Insulinas/metabolismo
2.
Metabolism ; 133: 155242, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750236

RESUMEN

INTRODUCTION AND METHODS: Skeletal muscle mitochondrial dysfunction may cause tissue oxidative stress and consequent catabolism in chronic kidney disease (CKD), contributing to patient mortality. We investigated in 5/6-nephrectomized (Nx) rats the impact of n3-polyunsaturated fatty-acids (n3-PUFA) isocaloric partial dietary replacement on gastrocnemius muscle (Gm) mitochondrial master-regulators, ATP production, ROS generation and related muscle-catabolic derangements. RESULTS: Nx had low Gm mitochondrial nuclear respiratory factor-2 and peroxisome proliferator-activated receptor gamma coactivator-1alpha, low ATP production and higher mitochondrial fission-fusion protein ratio with ROS overproduction. n3-PUFA normalized all mitochondrial derangements and pro-oxidative tissue redox state (oxydized to total glutathione ratio). n3-PUFA also normalized Nx-induced muscle-catabolic proinflammatory cytokines, insulin resistance and low muscle weight. Human uremic serum reproduced mitochondrial derangements in C2C12 myotubes, while n3-PUFA coincubation prevented all effects. n3-PUFA also enhanced muscle mitophagy in-vivo and siRNA-mediated autophagy inhibition selectively blocked n3-PUFA-induced normalization of C2C12 mitochondrial ROS production. CONCLUSIONS: In conclusion, dietary n3-PUFA normalize mitochondrial master-regulators, ATP production and dynamics in experimental CKD. These effects occur directly in muscle cells and they normalize ROS production through enhanced mitophagy. Dietary n3-PUFA mitochondrial effects result in normalized catabolic derangements and protection from muscle wasting, with potential positive impact on patient survival.


Asunto(s)
Ácidos Grasos Omega-3 , Insuficiencia Renal Crónica , Adenosina Trifosfato/metabolismo , Animales , Grasas de la Dieta/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Mitocondrias/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/metabolismo
3.
Nature ; 594(7861): 88-93, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33827113

RESUMEN

COVID-19 is a disease with unique characteristics that include lung thrombosis1, frequent diarrhoea2, abnormal activation of the inflammatory response3 and rapid deterioration of lung function consistent with alveolar oedema4. The pathological substrate for these findings remains unknown. Here we show that the lungs of patients with COVID-19 contain infected pneumocytes with abnormal morphology and frequent multinucleation. The generation of these syncytia results from activation of the SARS-CoV-2 spike protein at the cell plasma membrane level. On the basis of these observations, we performed two high-content microscopy-based screenings with more than 3,000 approved drugs to search for inhibitors of spike-driven syncytia. We converged on the identification of 83 drugs that inhibited spike-mediated cell fusion, several of which belonged to defined pharmacological classes. We focused our attention on effective drugs that also protected against virus replication and associated cytopathicity. One of the most effective molecules was the antihelminthic drug niclosamide, which markedly blunted calcium oscillations and membrane conductance in spike-expressing cells by suppressing the activity of TMEM16F (also known as anoctamin 6), a calcium-activated ion channel and scramblase that is responsible for exposure of phosphatidylserine on the cell surface. These findings suggest a potential mechanism for COVID-19 disease pathogenesis and support the repurposing of niclosamide for therapy.


Asunto(s)
Anoctaminas/antagonistas & inhibidores , COVID-19/patología , Fusión Celular , Evaluación Preclínica de Medicamentos , Células Gigantes/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Anoctaminas/metabolismo , COVID-19/metabolismo , COVID-19/virología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Canales de Cloruro/metabolismo , Chlorocebus aethiops , Femenino , Células Gigantes/metabolismo , Células Gigantes/virología , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Masculino , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral/efectos de los fármacos
4.
JCI Insight ; 52019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31211694

RESUMEN

Non-integrative AAV-mediated gene therapy in the liver is effective in adult patients, but faces limitations in pediatric settings due to episomal DNA loss during hepatocyte proliferation. Gene targeting is a promising approach by permanently modifying the genome. We previously rescued neonatal lethality in Crigler-Najjar mice by inserting a promoterless human uridine glucuronosyl transferase A1 (UGT1A1) cDNA in exon 14 of the albumin gene, without the use of nucleases. To increase recombination rate and therapeutic efficacy, here we used CRISPR/SaCas9. Neonatal mice were transduced with two AAVs: one expressing the SaCas9 and sgRNA, and one containing a promoterless cDNA flanked by albumin homology regions. Targeting efficiency increased ~26-fold with an eGFP reporter cDNA, reaching up to 24% of eGFP-positive hepatocytes. Next, we fully corrected the diseased phenotype of Crigler-Najjar mice by targeting the hUGT1A1 cDNA. Treated mice had normal plasma bilirubin up to 10 months after administration, hUGT1A1 protein levels were ~6-fold higher than in WT liver, with a 90-fold increase in recombination rate. Liver histology, inflammatory markers, and plasma albumin were normal in treated mice, with no off-targets in predicted sites. Thus, the improved efficacy and reassuring safety profile support the potential application of the proposed approach to other liver diseases.


Asunto(s)
Marcación de Gen/métodos , Terapia Genética/métodos , Glucuronosiltransferasa/genética , Hígado/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/terapia , Animales , Animales Recién Nacidos , Bilirrubina , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Complementario , Modelos Animales de Enfermedad , Femenino , Técnicas de Transferencia de Gen , Vectores Genéticos , Glucuronosiltransferasa/metabolismo , Células HEK293 , Hepatocitos/metabolismo , Humanos , Hígado/patología , Masculino , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Noqueados , Células 3T3 NIH , Albúmina Sérica , Usos Terapéuticos
5.
Nat Commun ; 8(1): 422, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871086

RESUMEN

Aging is the main risk factor for many chronic degenerative diseases and cancer. Increased senescent cell burden in various tissues is a major contributor to aging and age-related diseases. Recently, a new class of drugs termed senolytics were demonstrated to extending healthspan, reducing frailty and improving stem cell function in multiple murine models of aging. To identify novel and more optimal senotherapeutic drugs and combinations, we established a senescence associated ß-galactosidase assay as a screening platform to rapidly identify drugs that specifically affect senescent cells. We used primary Ercc1 -/- murine embryonic fibroblasts with reduced DNA repair capacity, which senesce rapidly if grown at atmospheric oxygen. This platform was used to screen a small library of compounds that regulate autophagy, identifying two inhibitors of the HSP90 chaperone family as having significant senolytic activity in mouse and human cells. Treatment of Ercc1 -/∆ mice, a mouse model of a human progeroid syndrome, with the HSP90 inhibitor 17-DMAG extended healthspan, delayed the onset of several age-related symptoms and reduced p16INK4a expression. These results demonstrate the utility of our screening platform to identify senotherapeutic agents as well as identified HSP90 inhibitors as a promising new class of senolytic drugs.The accumulation of senescent cells is thought to contribute to the age-associated decline in tissue function. Here, the authors identify HSP90 inhibitors as a new class of senolytic compounds in an in vitro screening and show that administration of a HSP90 inhibitor reduces age-related symptoms in progeroid mice.


Asunto(s)
Envejecimiento/fisiología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Benzoquinonas/farmacología , Bioensayo , Biomarcadores/metabolismo , Senescencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Endonucleasas/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lactamas Macrocíclicas/farmacología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Hum Gene Ther ; 25(9): 844-55, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25072305

RESUMEN

Null mutations in the UGT1A1 gene result in Crigler-Najjar syndrome type I (CNSI), characterized by severe hyperbilirubinemia and constant risk of developing neurological damage. Phototherapy treatment lowers plasma bilirubin levels, but its efficacy is limited and liver transplantation is required. To find alternative therapies, we applied AAV liver-specific gene therapy to a lethal mouse model of CNSI. We demonstrated that a single neonatal hUGT1A1 gene transfer was successful and the therapeutic effect lasted up to 17 months postinjection. The therapeutic effect was mediated by the presence of transcriptionally active double-stranded episomes. We also compared the efficacy of two different gene therapy approaches: liver versus skeletal muscle transgene expression. We observed that 5-8% of normal liver expression and activity levels were sufficient to significantly reduce bilirubin levels and maintain lifelong low plasma bilirubin concentration (3.1±1.5 mg/dl). In contrast, skeletal muscle was not able to efficiently lower bilirubin (6.4±2.0 mg/dl), despite 20-30% of hUgt1a1 expression levels, compared with normal liver. We propose that this remarkable difference in gene therapy efficacy could be related to the absence of the Mrp2 and Mrp3 transporters of conjugated bilirubin in muscle. Taken together, our data support the concept that liver is the best organ for efficient and long-term CNSI gene therapy, and suggest that the use of extra-hepatic tissues should be coupled to the presence of bilirubin transporters.


Asunto(s)
Síndrome de Crigler-Najjar/terapia , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/genética , Glucuronosiltransferasa/genética , Hígado/metabolismo , Animales , Animales Recién Nacidos , Bilirrubina/sangre , Southern Blotting , Western Blotting , Síndrome de Crigler-Najjar/genética , Ratones , Músculo Esquelético/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de Desempeño de Rotación con Aceleración Constante , Albúmina Sérica/análisis
8.
FASEB J ; 26(3): 1052-63, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22094718

RESUMEN

Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.


Asunto(s)
Síndrome de Crigler-Najjar/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Glucuronosiltransferasa/genética , Animales , Animales Recién Nacidos , Bilirrubina/sangre , Northern Blotting , Western Blotting , Cerebelo/enzimología , Cerebelo/metabolismo , Cerebelo/patología , Síndrome de Crigler-Najjar/enzimología , Síndrome de Crigler-Najjar/mortalidad , Dependovirus/clasificación , Dependovirus/genética , Regulación Enzimológica de la Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Glucuronosiltransferasa/deficiencia , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia
9.
Pharmacol Res ; 48(3): 309-17, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12860452

RESUMEN

Angiogenesis induced by growth factors may represent a rational therapy for patients with stroke. Vascular endothelial growth factor (VEGF) plays a pivotal role in angiogenesis and VEGF expression is enhanced in the post-ischemic brain. VEGF induced by brain hypoxia can lead to the growth of new vessels and may represent a natural protective mechanism improving survival after stroke. In the light of these findings we investigated changes of VEGF expression in different brain regions after intracerebroventricular injection of adeno-associated virus transferring gene for VEGF (rAAV-VEGF) in the gerbil, and after transient brain ischemic injury, we studied the effects of rAAV-VEGF injection on survival, brain edema, delayed neuronal death in the CA1 area and learning ability. Treatment with rAAV-VEGF 6 days or 12 days before ischemia significantly improves survival, brain edema and CA1 delayed neuronal death and post-ischemic learning evaluated by passive avoidance test. Animals treated with rAAV-VEGF showed in the thalamus and the cortex, a significant positive immunostaining for VEGF similar to those subjected to brain ischemia and not treated with rAAV-VEGF. These data represent a further contribution to a possible employment of gene therapy by using rAAV-VEGF in brain ischemia and indicate that thalamus and cortex may be targets for neuroprotective effects of VEGF.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Ataque Isquémico Transitorio/terapia , Factor A de Crecimiento Endotelial Vascular/genética , Análisis de Varianza , Animales , Reacción de Prevención , Encéfalo/metabolismo , Encéfalo/patología , Edema Encefálico/etiología , Edema Encefálico/prevención & control , Técnicas de Transferencia de Gen , Gerbillinae , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/patología , Masculino , Tálamo/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA