Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Clin Nutr ; 119(5): 1175-1186, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484976

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are proposed to play a role in the development of cardiovascular diseases (CVDs) and are considered emerging markers of CVDs. n-3 PUFAs are abundant in oily fish and fish oil and are reported to reduce CVD risk, but there has been little research to date examining the effects of n-3 PUFAs on the generation and function of EVs. OBJECTIVES: We aimed to investigate the effects of fish oil supplementation on the number, generation, and function of EVs in subjects with moderate risk of CVDs. METHODS: A total of 40 participants with moderate risk of CVDs were supplemented with capsules containing either fish oil (1.9 g/d n-3 PUFAs) or control oil (high-oleic safflower oil) for 12 wk in a randomized, double-blind, placebo-controlled crossover intervention study. The effects of fish oil supplementation on conventional CVD and thrombogenic risk markers were measured, along with the number and fatty acid composition of circulating and platelet-derived EVs (PDEVs). PDEV proteome profiles were evaluated, and their impact on coagulation was assessed using assays including fibrin clot formation, thrombin generation, fibrinolysis, and ex vivo thrombus formation. RESULTS: n-3 PUFAs decreased the numbers of circulating EVs by 27%, doubled their n-3 PUFA content, and reduced their capacity to support thrombin generation by >20% in subjects at moderate risk of CVDs. EVs derived from n-3 PUFA-enriched platelets in vitro also resulted in lower thrombin generation, but did not alter thrombus formation in a whole blood ex vivo assay. CONCLUSIONS: Dietary n-3 PUFAs alter the number, composition, and function of EVs, reducing their coagulatory activity. This study provides clear evidence that EVs support thrombin generation and that this EV-dependent thrombin generation is reduced by n-3 PUFAs, which has implications for prevention and treatment of thrombosis. CLINICAL TRIAL REGISTRY: This trial was registered at clinicaltrials.gov as NCT03203512.


Asunto(s)
Coagulación Sanguínea , Plaquetas , Estudios Cruzados , Vesículas Extracelulares , Ácidos Grasos Omega-3 , Humanos , Vesículas Extracelulares/metabolismo , Ácidos Grasos Omega-3/farmacología , Masculino , Femenino , Persona de Mediana Edad , Método Doble Ciego , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Suplementos Dietéticos , Enfermedades Cardiovasculares/prevención & control , Adulto , Aceites de Pescado/farmacología , Aceites de Pescado/administración & dosificación , Anciano , Ácidos Grasos/metabolismo
2.
Front Pharmacol ; 10: 1678, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32116678

RESUMEN

BACKGROUND: Flavonoids have been characterized as a prominent class of compounds to treat thrombotic diseases through the inhibition of thiol isomerases. Syzygium cumini is a flavonoid-rich medicinal plant that contains myricetin and gallic acid. Little is known about the potential antiplatelet properties of S. cumini and its constituent flavonoids. OBJECTIVE: To evaluate the antiplatelet effects and mechanism of action of a polyphenol-rich extract (PESc) from S. cumini leaf and its most prevalent polyphenols, myricetin and gallic acid. METHODS: PESc, myricetin, and gallic acid were incubated with platelet-rich plasma and washed platelets to assess platelet aggregation and activation. In vitro platelet adhesion and thrombus formation as well as in vivo bleeding time were performed. Finally, myricetin was incubated with recombinant thiol isomerases to assess its potential to bind and inhibit these, while molecular docking studies predicted possible binding sites. RESULTS: PESc decreased platelet activation and aggregation induced by different agonists. Myricetin exerted potent antiplatelet effects, whereas gallic acid did not. Myricetin reduced the ability of platelets to spread on collagen, form thrombi in vitro without affecting hemostasis in vivo. Fluorescence quenching studies suggested myricetin binds to different thiol isomerases with similar affinity, despite inhibiting only protein disulfide isomerase (PDI) and ERp5 reductase activities. Finally, molecular docking studies suggested myricetin formed non-covalent bonds with PDI and ERp5. CONCLUSIONS: PESc and its most abundant flavonoid myricetin strongly inhibit platelet function. Additionally, myricetin is a novel inhibitor of ERp5 and PDI, unveiling a new therapeutic perspective for the treatment of thrombotic disorders.

3.
Toxicon ; 130: 44-46, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28238804

RESUMEN

Snakebites cause death, disability and economic devastation to their victims, people who live almost exclusively in rural areas. Annually an estimated two million venomous bites cause as many as 100,000 deaths worldwide as well as hundreds of thousands of deformities and amputations. Recent studies suggest that India has the highest incidence of snakebite and associated deaths worldwide. In this study, we interviewed 25 hospital-based clinicians who regularly treat snakebites in Tamil Nadu, India, in order to gauge their opinions and views on the diagnostic tools and treatment methods available at that time, the difficulties encountered in treating snakebites and improvements to snakebite management protocols they deem necessary. Clinicians identified the improvement of community education, training of medical personnel, development of standard treatment protocols and improved medication as priorities for the immediate future.


Asunto(s)
Antivenenos/uso terapéutico , Mordeduras de Serpientes/diagnóstico , Costos de la Atención en Salud , Conocimientos, Actitudes y Práctica en Salud , Hospitales/estadística & datos numéricos , Humanos , India/epidemiología , Medicina Tradicional , Población Rural , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/epidemiología , Factores de Tiempo
4.
J Nutr Biochem ; 26(11): 1156-65, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26140983

RESUMEN

Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase, Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high-quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates.


Asunto(s)
Flavonoides/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Apigenina/química , Apigenina/farmacología , Sitios de Unión , Catequina/química , Catequina/farmacología , Evaluación Preclínica de Medicamentos/métodos , Flavonoides/química , Humanos , Simulación del Acoplamiento Molecular , Dominios Proteicos , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-hck/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-hck/química , Proteínas Proto-Oncogénicas c-hck/metabolismo , Quercetina/química , Quercetina/farmacología , Relación Estructura-Actividad , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo
5.
PLoS Negl Trop Dis ; 4(8): e796, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20706583

RESUMEN

BACKGROUND: Snake bite is a major neglected public health issue within poor communities living in the rural areas of several countries throughout the world. An estimated 2.5 million people are bitten by snakes each year and the cost and lack of efficacy of current anti-venom therapy, together with the lack of detailed knowledge about toxic components of venom and their modes of action, and the unavailability of treatments in rural areas mean that annually there are around 125,000 deaths worldwide. In order to develop cheaper and more effective therapeutics, the toxic components of snake venom and their modes of action need to be clearly understood. One particularly poorly understood component of snake venom is aminopeptidases. These are exo-metalloproteases, which, in mammals, are involved in important physiological functions such as the maintenance of blood pressure and brain function. Although aminopeptidase activities have been reported in some snake venoms, no detailed analysis of any individual snake venom aminopeptidases has been performed so far. As is the case for mammals, snake venom aminopeptidases may also play important roles in altering the physiological functions of victims during envenomation. In order to further understand this important group of snake venom enzymes we have isolated, functionally characterised and analysed the sequence-structure relationships of an aminopeptidase from the venom of the large, highly venomous West African gaboon viper, Bitis gabonica rhinoceros. METHODOLOGY AND PRINCIPAL FINDINGS: The venom of B. g. rhinoceros was fractionated by size exclusion chromatography and fractions with aminopeptidase activities were isolated. Fractions with aminopeptidase activities showed a pure protein with a molecular weight of 150 kDa on SDS-PAGE. In the absence of calcium, this purified protein had broad aminopeptidase activities against acidic, basic and neutral amino acids but in the presence of calcium, it had only acidic aminopeptidase activity (APA). Together with the functional data, mass spectrometry analysis of the purified protein confirmed this as an aminopeptidase A and thus this has been named as rhiminopeptidase A. The complete gene sequence of rhiminopeptidase A was obtained by sequencing the PCR amplified aminopeptidase A gene from the venom gland cDNA of B. g. rhinoceros. The gene codes for a predicted protein of 955 amino acids (110 kDa), which contains the key amino acids necessary for functioning as an aminopeptidase A. A structural model of rhiminopeptidase A shows the structure to consist of 4 domains: an N-terminal saddle-shaped beta domain, a mixed alpha and beta catalytic domain, a beta-sandwich domain and a C-terminal alpha helical domain. CONCLUSIONS: This study describes the discovery and characterisation of a novel aminopeptidase A from the venom of B. g. rhinoceros and highlights its potential biological importance. Similar to mammalian aminopeptidases, rhiminopeptidase A might be capable of playing roles in altering the blood pressure and brain function of victims. Furthermore, it could have additional effects on the biological functions of other host proteins by cleaving their N-terminal amino acids. This study points towards the importance of complete analysis of individual components of snake venom in order to develop effective therapies for snake bites.


Asunto(s)
Glutamil Aminopeptidasa/aislamiento & purificación , Glutamil Aminopeptidasa/metabolismo , Venenos de Víboras/enzimología , Viperidae , Secuencia de Aminoácidos , Animales , Calcio/farmacología , Cromatografía en Gel , Coenzimas/farmacología , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Glutamil Aminopeptidasa/química , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad por Sustrato
6.
Br J Nutr ; 96(3): 482-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16925853

RESUMEN

Epidemiological data suggest that those who consume a diet rich in quercetin-containing foods may have a reduced risk of CVD. Furthermore, in vitro and ex vivo studies have observed the inhibition of collagen-induced platelet activation by quercetin. The aim of the present study was to investigate the possible inhibitory effects of quercetin ingestion from a dietary source on collagen-stimulated platelet aggregation and signalling. A double-blind randomised cross-over pilot study was undertaken. Subjects ingested a soup containing either a high or a low amount of quercetin. Plasma quercetin concentrations and platelet aggregation and signalling were assessed after soup ingestion. The high-quercetin soup contained 69 mg total quercetin compared with the low-quercetin soup containing 5 mg total quercetin. Plasma quercetin concentrations were significantly higher after high-quercetin soup ingestion than after low-quercetin soup ingestion and peaked at 2.59 (sem 0.42) mumol/l. Collagen-stimulated (0.5 mug/ml) platelet aggregation was inhibited after ingestion of the high-quercetin soup in a time-dependent manner. Collagen-stimulated tyrosine phosphorylation of a key component of the collagen-signalling pathway via glycoprotein VI, Syk, was significantly inhibited by ingestion of the high-quercetin soup. The inhibition of Syk tyrosine phosphorylation was correlated with the area under the curve for the high-quercetin plasma profile. In conclusion, the ingestion of quercetin from a dietary source of onion soup could inhibit some aspects of collagen-stimulated platelet aggregation and signalling ex vivo. This further substantiates the epidemiological data suggesting that those who preferentially consume high amounts of quercetin-containing foods have a reduced risk of thrombosis and potential CVD risk.


Asunto(s)
Colágeno/fisiología , Ingestión de Alimentos/fisiología , Fibrinolíticos/administración & dosificación , Cebollas/química , Activación Plaquetaria/fisiología , Agregación Plaquetaria/fisiología , Quercetina/administración & dosificación , Adulto , Estudios Cruzados , Dieta , Disacáridos/sangre , Método Doble Ciego , Femenino , Flavonoides/análisis , Flavonoles/sangre , Humanos , Masculino , Proyectos Piloto , Quercetina/análogos & derivados , Quercetina/sangre , Transducción de Señal/fisiología
7.
Proc Nutr Soc ; 62(2): 469-78, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-14506895

RESUMEN

Platelets play a substantial role in cardiovascular disease, and for many years there has been a search for dietary componentsthat are able to inhibit platelet function and therefore decrease the risk of cardiovasculardisease. Platelets can be inhibited by alcohol, dietary fats and some antioxidants, including agroup of compounds, the polyphenols, found in fruits and vegetables. A number of these compounds have been shown to inhibit platelet function both in vitro and in vivo. In the present study the effects of the hydroxycinnamates and the flavonoid quercetin on platelet activation and cell signalling in vitro were investigated. The hydroxycinnamates inhibited platelet function, although not at levels that can be achieved in human plasma by dietary intervention. However, quercetin inhibited platelet aggregation at levels lower than those previously reported. Quercetin was also found to inhibit intracellular Ca mobilisation and whole-cell tyrosine protein phosphorylation in platelets, which are both processes essential for platelet activation. The effect of polyphenols on platelet aggregation in vivo was also investigated. Twenty subjects followed a low-polyphenol diet for 3 d before and also during supplementation. All subjects were supplemented with a polyphenol-rich meal every lunchtime for 5d. Platelet aggregation and plasma flavonols were measured at baseline and after 5d of dietary supplementation. Total plasma flavonoids increased significantly after the dietary intervention period (P = 0.001). However, no significant changes in ex vivo platelet aggregation were observed. Further investigation of the effects of individual polyphenolic compoundson platelet function, both in vitro and in vivo, is required in order to elucidate their role in the relationship between diet and the risk of cardiovascular disease.


Asunto(s)
Plaquetas/efectos de los fármacos , Enfermedades Cardiovasculares/prevención & control , Flavonoides/farmacología , Fenoles/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Plaquetas/fisiología , Calcio/sangre , Enfermedades Cardiovasculares/epidemiología , Flavonoides/administración & dosificación , Frutas , Humanos , Fenoles/administración & dosificación , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/administración & dosificación , Polifenoles , Quercetina/farmacología , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA