Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 14176, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986201

RESUMEN

Struvite (St) recovered from wastewaters is a sustainable option for phosphorus (P) recovery and fertilization, whose solubility is low in water and high in environments characterized by a low pH, such as acidic soils. To broaden the use of struvite in the field, its application as granules is recommended, and thus the way of application should be optimized to control the solubility. In this study struvite slow-release fertilizers were designed by dispersing St particles (25, 50, and 75 wt%) in a biodegradable and hydrophilic matrix of thermoplastic starch (TPS). It was shown that, in citric acid solution (pH = 2), TPS promoted a steadier P-release from St compared to the pure St pattern. In a pH neutral sand, P-diffusion from St-TPS fertilizers was slower than from the positive control of triple superphosphate (TSP). Nevertheless, St-TPS featured comparable maize growth (i.e. plant height, leaf area, and biomass) and similar available P as TSP in sand after 42 days of cultivation. These results indicated that St-TPS slow P release could provide enough P for maize in sand, achieving a desirable agronomic efficiency while also reducing P runoff losses in highly permeable soils.


Asunto(s)
Fertilizantes , Arena , Fertilización , Fertilizantes/análisis , Fosfatos/química , Fósforo/química , Suelo/química , Estruvita/química , Zea mays
2.
Environ Sci Pollut Res Int ; 29(19): 28804-28815, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988808

RESUMEN

The manufacture of asbestos materials has been banished worldwide due to their toxicity, but discarding the existing wastes remains a challenge. We investigated an alternative mechanochemical method to treat asbestos-cement materials by loading them with potassium and phosphorus from KH2PO4 during the milling process to obtain a product used as liming and soil conditioner. The results showed total asbestos fibrous elimination after 7 to 8 h of milling. The materials showed a slow-release fertilizer profile. The liming property is maintained when the asbestos-cement weight proportion used is equal to or higher than KH2PO4. A comparative soil experiment with limestone also indicates that lower doses of the K- and P-enriched detoxified asbestos cement were required to reach similar liming effects. Maize cultivation (greenhouse) was used to evaluate its performance showing higher biomass production for the sample loaded with potassium and phosphorous.


Asunto(s)
Amianto , Suelo , Amianto/química , Concentración de Iones de Hidrógeno , Nutrientes , Fósforo , Potasio , Suelo/química
3.
Curr Microbiol ; 78(4): 1529-1542, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33675402

RESUMEN

Intensive fertilization has been required to provide nutrients for plant growth under the current agricultural practices being applied to meet the global food demands. Micronutrients such as zinc, manganese, and copper are required in small quantities when compared to macronutrients (such as nitrogen, phosphorus and potassium), but they are essential for the plant growth cycle and consequently for increasing productivity. Mineral oxides such as ZnO, MnO, and CuO are used in agriculture as micronutrient sources, but their low solubility limits practical applications in plant nutrition. Similarly, elemental sulfur (S0) can provide a high-concentration source of sulfate, but its availability is limited by the ability of the soil to promote S0 oxidation. We propose here the integration of these nutrients in a composite based on a biodegradable starch matrix containing mineral oxides and S0 in a dispersion that allowed encapsulation of the acidifying agent Aspergillus niger, a native soil fungus. This strategy effectively improved the final nutrient solubility, with the composite starch/S0/oxidemixture multi-nutrient fertilizer showing remarkable results for solubilization of the oxides, hence confirming a synergic effect of S0 oxidation and microbial solubilization. This composite exhibited an extended shelf life and soil-plant experiments with Italian ryegrass (Lolium multiflorum Lam.) confirmed high efficiencies for dry matter production, nutrient uptake, and recovery. These findings can contribute to the development of environmentally friendly fertilizers towards a more sustainable agriculture and could open up new applications for formulations containing poorly soluble oxide sources.


Asunto(s)
Aspergillus niger , Fertilizantes , Fertilizantes/análisis , Nutrientes , Fósforo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA