Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 35(5): e21477, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33891326

RESUMEN

Chronic fetal hypoxia is one of the most common outcomes in complicated pregnancy in humans. Despite this, its effects on the long-term health of the brain in offspring are largely unknown. Here, we investigated in rats whether hypoxic pregnancy affects brain structure and function in the adult offspring and explored underlying mechanisms with maternal antioxidant intervention. Pregnant rats were randomly chosen for normoxic or hypoxic (13% oxygen) pregnancy with or without maternal supplementation with vitamin C in their drinking water. In one cohort, the placenta and fetal tissues were collected at the end of gestation. In another, dams were allowed to deliver naturally, and offspring were reared under normoxic conditions until 4 months of age (young adult). Between 3.5 and 4 months, the behavior, cognition and brains of the adult offspring were studied. We demonstrated that prenatal hypoxia reduced neuronal number, as well as vascular and synaptic density, in the hippocampus, significantly impairing memory function in the adult offspring. These adverse effects of prenatal hypoxia were independent of the hypoxic pregnancy inducing fetal growth restriction or elevations in maternal or fetal plasma glucocorticoid levels. Maternal vitamin C supplementation during hypoxic pregnancy protected against oxidative stress in the placenta and prevented the adverse effects of prenatal hypoxia on hippocampal atrophy and memory loss in the adult offspring. Therefore, these data provide a link between prenatal hypoxia, placental oxidative stress, and offspring brain health in later life, providing insight into mechanism and identifying a therapeutic strategy.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Atrofia/tratamiento farmacológico , Hipoxia Fetal/complicaciones , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Animales , Animales Recién Nacidos , Antioxidantes/uso terapéutico , Atrofia/etiología , Atrofia/metabolismo , Atrofia/patología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Embarazo , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/patología , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Wistar
2.
J Physiol ; 592(3): 475-89, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24247986

RESUMEN

Hypoxia is a common challenge to the fetus, promoting a physiological defence to redistribute blood flow towards the brain and away from peripheral circulations. During acute hypoxia, reactive oxygen species (ROS) interact with nitric oxide (NO) to provide an oxidant tone. This contributes to the mechanisms redistributing the fetal cardiac output, although the source of ROS is unknown. Here, we investigated whether ROS derived from xanthine oxidase (XO) contribute to the fetal peripheral vasoconstrictor response to hypoxia via interaction with NO-dependent mechanisms. Pregnant ewes and their fetuses were surgically prepared for long-term recording at 118 days of gestation (term approximately 145 days). After 5 days of recovery, mothers were infused i.v. for 30 min with either vehicle (n = 11), low dose (30 mg kg(-1), n = 5) or high dose (150 mg kg(-1), n = 9) allopurinol, or high dose allopurinol with fetal NO blockade (n = 6). Following allopurinol treatment, fetal hypoxia was induced by reducing maternal inspired O2 such that fetal basal P aO 2 decreased approximately by 50% for 30 min. Allopurinol inhibited the increase in fetal plasma uric acid and suppressed the fetal femoral vasoconstrictor, glycaemic and lactate acidaemic responses during hypoxia (all P < 0.05), effects that were restored to control levels with fetal NO blockade. The data provide evidence for the activation of fetal XO in vivo during hypoxia and for XO-derived ROS in contributing to the fetal peripheral vasoconstriction, part of the fetal defence to hypoxia. The data are of significance to the understanding of the physiological control of the fetal cardiovascular system during hypoxic stress. The findings are also of clinical relevance in the context of obstetric trials in which allopurinol is being administered to pregnant women when the fetus shows signs of hypoxic distress.


Asunto(s)
Presión Sanguínea , Corazón Fetal/fisiopatología , Hipoxia Fetal/fisiopatología , Frecuencia Cardíaca , Xantina Oxidasa/sangre , Alopurinol/farmacología , Animales , Glucemia/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Hipoxia Fetal/sangre , Edad Gestacional , Ácido Láctico/sangre , Óxido Nítrico/sangre , Oxígeno/sangre , Consumo de Oxígeno , Embarazo , Especies Reactivas de Oxígeno/sangre , Flujo Sanguíneo Regional , Ovinos , Ácido Úrico/sangre , Vasoconstricción , Xantina Oxidasa/antagonistas & inhibidores
3.
Mol Metab ; 2(4): 480-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24327963

RESUMEN

Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans.

4.
Circ J ; 77(10): 2604-11, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23856654

RESUMEN

BACKGROUND: Fetal hypoxia is common and in vitro evidence supports its role in the programming of adult cardiovascular dysfunction through the generation of oxidative stress. Whether fetal chronic hypoxia programmes alterations in cardiovascular control in vivo, and if these alterations can be prevented by antioxidant treatment, is unknown. This study investigated the effects of prenatal fetal hypoxia, with and without maternal supplementation with vitamin C, on basal and stimulated cardiovascular function in vivo in the adult offspring at 4 months of age in the rat. METHODS AND RESULTS: From days 6 to 20 of pregnancy, Wistar rats were subjected to Normoxia, Hypoxia (13% O2), Hypoxia+Vitamin C (5mg/ml in drinking water) or Normoxia+Vitamin C. At 4 months, male offspring were instrumented under urethane anaesthesia. Basal mean arterial blood pressure, heart rate and heart rate variability (HRV) were assessed, and stimulated baroreflex curves were generated with phenylephrine and sodium nitroprusside. Chronic fetal hypoxia increased the LF/HF HRV ratio and baroreflex gain, effects prevented by vitamin C administration during pregnancy. CONCLUSIONS: Chronic intrauterine hypoxia programmes cardiovascular dysfunction in vivo in adult rat offspring; effects ameliorated by maternal treatment with vitamin C. The data support a role for fetal chronic hypoxia programming cardiovascular dysfunction in the adult rat offspring in vivo through the generation of oxidative stress in utero.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Enfermedades Cardiovasculares/prevención & control , Hipoxia Fetal/prevención & control , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Femenino , Hipoxia Fetal/fisiopatología , Hipoxia/complicaciones , Hipoxia/fisiopatología , Hipoxia/prevención & control , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA