Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Trends Endocrinol Metab ; 35(9): 781-792, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38599899

RESUMEN

Selenium (Se) is an essential trace element, which is inserted as selenocysteine (Sec) into selenoproteins during biosynthesis, orchestrating their expression and activity. Se is associated with both beneficial and detrimental health effects; deficient supply or uncontrolled supplementation raises concerns. In particular, Se was associated with an increased incidence of type 2 diabetes (T2D) in a secondary analysis of a randomized controlled trial (RCT). In this review, we discuss the intricate relationship between Se and diabetes and the limitations of the available clinical and experimental studies. Recent evidence points to sexual dimorphism and an association of Se deficiency with gestational diabetes mellitus (GDM). We highlight the emerging evidence linking high Se status with improved prognosis in patients with T2D and lower risk of macrovascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Selenio , Humanos , Selenio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Diabetes Gestacional/metabolismo , Embarazo , Caracteres Sexuales , Animales , Masculino , Selenoproteínas/metabolismo
2.
Arch Biochem Biophys ; 730: 109426, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36202216

RESUMEN

Selenophosphate synthetase (SEPHS) was originally discovered in prokaryotes as an enzyme that catalyzes selenophosphate synthesis using inorganic selenium and ATP as substrates. However, in contrast to prokaryotes, two paralogs, SEPHS1 and SEPHS2, occur in many eukaryotes. Prokaryotic SEPHS, also known as SelD, contains either cysteine (Cys) or selenocysteine (Sec) in the catalytic domain. In eukaryotes, only SEPHS2 carries out selenophosphate synthesis and contains Sec at the active site. However, SEPHS1 contains amino acids other than Sec or Cys at the catalytic position. Phylogenetic analysis of SEPHSs reveals that the ancestral SEPHS contains both selenophosphate synthesis and another unknown activity, and that SEPHS1 lost the selenophosphate synthesis activity. The three-dimensional structure of SEPHS1 suggests that its homodimer is unable to form selenophosphate, but retains ATPase activity to produce ADP and inorganic phosphate. The most prominent function of SEPHS1 is that it is implicated in the regulation of cellular redox homeostasis. Deficiency of SEPHS1 leads to the disturbance in the expression of genes involved in redox homeostasis. Different types of reactive oxygen species (ROS) are accumulated in response to SEPHS deficiency depending on cell or tissue types. The accumulation of ROS causes pleiotropic effects such as growth retardation, apoptosis, DNA damage, and embryonic lethality. SEPHS1 deficiency in mouse embryos affects retinoic signaling and other related signaling pathways depending on the embryonal stage until the embryo dies at E11.5. Dysregulated SEPHS1 is associated with the pathogenesis of various diseases including cancer, Crohn's disease, and osteoarthritis.


Asunto(s)
Selenio , Selenocisteína , Animales , Ratones , Adenosina Difosfato , Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo , Cisteína , Fosfatos , Filogenia , Especies Reactivas de Oxígeno
3.
Biomolecules ; 12(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36008942

RESUMEN

The human genome has 25 genes coding for selenocysteine (Sec)-containing proteins, whose synthesis is supported by specialized Sec machinery proteins. Here, we carried out an analysis of the co-essentiality network to identify functional partners of selenoproteins and Sec machinery. One outstanding cluster included all seven known Sec machinery proteins and two critical selenoproteins, GPX4 and TXNRD1. Additionally, these nine genes were further positively associated with PRDX6 and negatively with SCD, linking the latter two genes to the essential role of selenium. We analyzed the essentiality scores of gene knockouts in this cluster across one thousand cancer cell lines and found that Sec metabolism genes are strongly selective for a subset of primary tissues, suggesting that certain cancer cell lineages are particularly dependent on selenium. A separate outstanding cluster included selenophosphate synthetase SEPHS1, which was linked to a group of transcription factors, whereas the remaining selenoproteins were linked neither to these clusters nor among themselves. The data suggest that key components of Sec machinery have already been identified and that their primary role is to support the functions of GPX4 and TXNRD1, with further functional links to PRDX6 and SCD.


Asunto(s)
Peroxiredoxina VI/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Selenio , Selenocisteína , Estearoil-CoA Desaturasa/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Línea Celular , Genoma Humano , Humanos , Peroxiredoxina VI/genética , Selenio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Reductasa 1/genética
4.
Nat Commun ; 13(1): 779, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140209

RESUMEN

Aging and mechanical overload are prominent risk factors for osteoarthritis (OA), which lead to an imbalance in redox homeostasis. The resulting state of oxidative stress drives the pathological transition of chondrocytes during OA development. However, the specific molecular pathways involved in disrupting chondrocyte redox homeostasis remain unclear. Here, we show that selenophosphate synthetase 1 (SEPHS1) expression is downregulated in human and mouse OA cartilage. SEPHS1 downregulation impairs the cellular capacity to synthesize a class of selenoproteins with oxidoreductase functions in chondrocytes, thereby elevating the level of reactive oxygen species (ROS) and facilitating chondrocyte senescence. Cartilage-specific Sephs1 knockout in adult mice causes aging-associated OA, and augments post-traumatic OA, which is rescued by supplementation of N-acetylcysteine (NAC). Selenium-deficient feeding and Sephs1 knockout have synergistic effects in exacerbating OA pathogenesis in mice. Therefore, we propose that SEPHS1 is an essential regulator of selenium metabolism and redox homeostasis, and its dysregulation governs the progression of OA.


Asunto(s)
Homeostasis , Osteoartritis/genética , Osteoartritis/metabolismo , Fosfotransferasas/deficiencia , Fosfotransferasas/genética , Envejecimiento , Animales , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Selenio/metabolismo , Selenoproteínas , Transcriptoma
5.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769022

RESUMEN

Selenium is incorporated into selenoproteins as the 21st amino acid selenocysteine (Sec). There are 25 selenoproteins encoded in the human genome, and their synthesis requires a dedicated machinery. Most selenoproteins are oxidoreductases with important functions in human health. A number of disorders have been associated with deficiency of selenoproteins, caused by mutations in selenoprotein genes or Sec machinery genes. We discuss mutations that are known to cause disease in humans and report their allele frequencies in the general population. The occurrence of protein-truncating variants in the same genes is also presented. We provide an overview of pathogenic variants in selenoproteins genes from a population genomics perspective.


Asunto(s)
Variación Genética/genética , Selenocisteína/genética , Selenoproteínas/genética , Alelos , Animales , Genoma Humano/genética , Humanos , Selenio/metabolismo
6.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008430

RESUMEN

Selenium is a fascinating element that has a long history, most of which documents it as a deleterious element to health. In more recent years, selenium has been found to be an essential element in the diet of humans, all other mammals, and many other life forms. It has many health benefits that include, for example, roles in preventing heart disease and certain forms of cancer, slowing AIDS progression in HIV patients, supporting male reproduction, inhibiting viral expression, and boosting the immune system, and it also plays essential roles in mammalian development. Elucidating the molecular biology of selenium over the past 40 years generated an entirely new field of science which encompassed the many novel features of selenium. These features were (1) how this element makes its way into protein as the 21st amino acid in the genetic code, selenocysteine (Sec); (2) the vast amount of machinery dedicated to synthesizing Sec uniquely on its tRNA; (3) the incorporation of Sec into protein; and (4) the roles of the resulting Sec-containing proteins (selenoproteins) in health and development. One of the research areas receiving the most attention regarding selenium in health has been its role in cancer prevention, but further research has also exposed the role of this element as a facilitator of various maladies, including cancer.


Asunto(s)
Selenio/administración & dosificación , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Animales , Dieta , Código Genético , Salud , Humanos , ARN de Transferencia Aminoácido-Específico/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(20): 10789-10796, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358195

RESUMEN

Oxidation of cysteine thiols by physiological reactive oxygen species (ROS) initiates thermogenesis in brown and beige adipose tissues. Cellular selenocysteines, where sulfur is replaced with selenium, exhibit enhanced reactivity with ROS. Despite their critical roles in physiology, methods for broad and direct detection of proteogenic selenocysteines are limited. Here we developed a mass spectrometric method to interrogate incorporation of selenium into proteins. Unexpectedly, this approach revealed facultative incorporation of selenium as selenocysteine or selenomethionine into proteins that lack canonical encoding for selenocysteine. Selenium was selectively incorporated into regulatory sites on key metabolic proteins, including as selenocysteine-replacing cysteine at position 253 in uncoupling protein 1 (UCP1). This facultative utilization of selenium was initiated by increasing cellular levels of organic, but not inorganic, forms of selenium. Remarkably, dietary selenium supplementation elevated facultative incorporation into UCP1, elevated energy expenditure through thermogenic adipose tissue, and protected against obesity. Together, these findings reveal the existence of facultative protein selenation, which correlates with impacts on thermogenic adipocyte function and presumably other biological processes as well.


Asunto(s)
Tejido Adiposo/metabolismo , Cisteína/metabolismo , Obesidad/metabolismo , Selenio/metabolismo , Termogénesis , Proteína Desacopladora 1/metabolismo , Tejido Adiposo/fisiología , Animales , Células Cultivadas , Masculino , Espectrometría de Masas/métodos , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
8.
Biofactors ; 46(4): 653-664, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32384218

RESUMEN

Formation of atherosclerotic plaques, called atherogenesis, is a complex process affected by genetic and environmental factors. It was proposed that endoplasmic reticulum (ER) stress is an important factor in the pathogenesis of atherosclerosis and that vitamin E affects atherosclerotic plaque formation via its antioxidant properties. Here, we investigated ER stress-related molecular mechanisms in high-cholesterol diet (HCD, 2%)-induced atherosclerosis model and the role of vitamin E supplementation in it, beyond its antioxidant properties. The consequences of HCD and vitamin E supplementation were examined by determining protein levels of ER stress markers in aortic tissues. As vitamin E supplementation acts on several unfolded protein response (UPR) factors, it decreased ER stress induced by HCD. To elucidate the associated pathways, gene expression profiling was performed, revealing differentially expressed genes enriched in ER stress-related pathways such as the proteasome and the apoptosis pathways. We further assessed the proteasomal activity impaired by HCD in the aorta and showed that vitamin E reversed it to that of control animals. Overall, the study characterized the effects of HCD and vitamin E on ER stress-related gene expression, revealing the role of proteolytic systems during atherogenesis.


Asunto(s)
Antioxidantes/farmacología , Aterosclerosis/genética , Colesterol/administración & dosificación , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipercolesterolemia/genética , Placa Aterosclerótica/genética , Vitamina E/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Aterosclerosis/etiología , Aterosclerosis/patología , Aterosclerosis/prevención & control , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Hipercolesterolemia/etiología , Hipercolesterolemia/patología , Hipercolesterolemia/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Anotación de Secuencia Molecular , Placa Aterosclerótica/etiología , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Conejos , Respuesta de Proteína Desplegada/efectos de los fármacos
9.
J Mol Biol ; 431(22): 4381-4407, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31442478

RESUMEN

Selenoproteins typically contain a single selenocysteine, the 21st amino acid, encoded by a context-redefined UGA. However, human selenoprotein P (SelenoP) has a redox-functioning selenocysteine in its N-terminal domain and nine selenium transporter-functioning selenocysteines in its C-terminal domain. Here we show that diverse SelenoP genes are present across metazoa with highly variable numbers of Sec-UGAs, ranging from a single UGA in certain insects, to 9 in common spider, and up to 132 in bivalve molluscs. SelenoP genes were shaped by a dynamic evolutionary process linked to selenium usage. Gene evolution featured modular expansions of an ancestral multi-Sec domain, which led to particularly Sec-rich SelenoP proteins in many aquatic organisms. We focused on molluscs, and chose Pacific oyster Magallana gigas as experimental model. We show that oyster SelenoP mRNA with 46 UGAs is translated full-length in vivo. Ribosome profiling indicates that selenocysteine specification occurs with ∼5% efficiency at UGA1 and approaches 100% efficiency at distal 3' UGAs. We report genetic elements relevant to its expression, including a leader open reading frame and an RNA structure overlapping the initiation codon that modulates ribosome progression in a selenium-dependent manner. Unlike their mammalian counterparts, the two SECIS elements in oyster SelenoP (3'UTR recoding elements) do not show functional differentiation in vitro. Oysters can increase their tissue selenium level up to 50-fold upon supplementation, which also results in extensive changes in selenoprotein expression.


Asunto(s)
Codón de Terminación/genética , Moluscos/química , Moluscos/genética , Selenoproteína P/química , Selenoproteína P/genética , Animales , Evolución Biológica , Biosíntesis de Proteínas , Selenocisteína/química , Selenocisteína/genética
10.
Cell Rep ; 27(9): 2785-2797.e3, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141699

RESUMEN

Selenium (Se) is an essential trace element because of its presence in selenoproteins in the form of selenocysteine residue. Both Se deficiency, which compromises selenoprotein functions, and excess Se, which is toxic, have been associated with altered redox homeostasis and adverse health conditions. Surprisingly, we found that, although Se deficiency led to a drastic decline in selenoprotein expression, mice subjected to this dietary regimen for their entire life had normal lifespans. To understand the molecular mechanisms involved, we performed systemic analyses at the level of metabolome, transcriptome, and microRNA profiling. These analyses revealed that Se deficiency reduced amino acid levels, elevated mononucleotides, altered metabolism, and activated signaling pathways linked to longevity-related nutrient sensing. The data show that the metabolic control associated with nutrient sensing coordinately responds to suppressed selenoprotein functions, resulting in normal lifespan under Se deficiency.


Asunto(s)
Longevidad , Metaboloma , MicroARNs , Selenio/deficiencia , Selenoproteínas/metabolismo , Transcriptoma , Aminoácidos/análisis , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Dieta , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Nucleótidos/análisis , Ratas , Selenio/administración & dosificación , Selenoproteínas/genética
11.
Sci Rep ; 7(1): 4391, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28663583

RESUMEN

Selenoprotein biosynthesis relies on the co-translational insertion of selenocysteine in response to UGA codons. Aminoglycoside antibiotics interfere with ribosomal function and may cause codon misreading. We hypothesized that biosynthesis of the selenium (Se) transporter selenoprotein P (SELENOP) is particularly sensitive to antibiotics due to its ten in frame UGA codons. As liver regulates Se metabolism, we tested the aminoglycosides G418 and gentamicin in hepatoma cell lines (HepG2, Hep3B and Hepa1-6) and in experimental mice. In vitro, SELENOP levels increased strongly in response to G418, whereas expression of the glutathione peroxidases GPX1 and GPX2 was marginally affected. Se content of G418-induced SELENOP was dependent on Se availability, and was completely suppressed by G418 under Se-poor conditions. Selenocysteine residues were replaced mainly by cysteine, tryptophan and arginine in a codon-specific manner. Interestingly, in young healthy mice, antibiotic treatment failed to affect Selenop biosynthesis to a detectable degree. These findings suggest that the interfering activity of aminoglycosides on selenoprotein biosynthesis can be severe, but depend on the Se status, and other parameters likely including age and general health. Focused analyses with aminoglycoside-treated patients are needed next to evaluate a possible interference of selenoprotein biosynthesis by the antibiotics and elucidate potential side effects.


Asunto(s)
Aminoglicósidos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Selenio/deficiencia , Selenoproteína P/biosíntesis , Aminoácidos , Animales , Línea Celular Tumoral , Cromatografía Liquida , Codón de Terminación , Expresión Génica , Gentamicinas/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Selenoproteína P/genética , Espectrometría de Masas en Tándem
12.
Free Radic Biol Med ; 104: 249-261, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28108278

RESUMEN

Selenium is present in proteins in the form of selenocysteine, where this amino acid serves catalytic oxidoreductase functions. The use of selenocysteine in nature is strongly associated with redox catalysis. However, selenium is also found in a 2-selenouridine moiety at the wobble position of tRNAGlu, tRNAGln and tRNALys. It is thought that the modifications of the wobble position of the tRNA improves the selectivity of the codon-anticodon pair as a result of the physico-chemical changes that result from substitution of sulfur and selenium for oxygen. Both selenocysteine and 2-selenouridine have widespread analogs, cysteine and thiouridine, where sulfur is used instead. To examine the role of selenium in 2-selenouridine, we comparatively analyzed the oxidation reactions of sulfur-containing 2-thiouracil-5-carboxylic acid (s2c5Ura) and its selenium analog 2-selenouracil-5-carboxylic acid (se2c5Ura) using 1H-NMR spectroscopy, 77Se-NMR spectroscopy, and liquid chromatography-mass spectrometry. Treatment of s2c5Ura with hydrogen peroxide led to oxidized intermediates, followed by irreversible desulfurization to form uracil-5-carboxylic acid (c5Ura). In contrast, se2c5Ura oxidation resulted in a diselenide intermediate, followed by conversion to the seleninic acid, both of which could be readily reduced by ascorbate and glutathione. Glutathione and ascorbate only minimally prevented desulfurization of s2c5Ura, whereas very little deselenization of se2c5Ura occurred in the presence of the same antioxidants. In addition, se2c5Ura but not s2c5Ura showed glutathione peroxidase activity, further suggesting that oxidation of se2c5Ura is readily reversible, while oxidation of s2c5Ura is not. The results of the study of these model nucleobases suggest that the use of 2-selenouridine is related to resistance to oxidative inactivation that otherwise characterizes 2-thiouridine. As the use of selenocysteine in proteins also confers resistance to oxidation, our findings suggest a common mechanism for the use of selenium in biology.


Asunto(s)
Selenio/metabolismo , Selenocisteína/metabolismo , Azufre/metabolismo , Uracilo/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Espectroscopía de Resonancia Magnética , Compuestos de Organoselenio/química , Compuestos de Organoselenio/metabolismo , Oxidación-Reducción , Estrés Oxidativo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Selenio/química , Selenocisteína/química , Azufre/química , Uracilo/análogos & derivados , Uracilo/química , Uridina/análogos & derivados , Uridina/química , Uridina/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(38): E5562-71, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27588899

RESUMEN

Selenium, an essential micronutrient known for its cancer prevention properties, is incorporated into a class of selenocysteine-containing proteins (selenoproteins). Selenoprotein H (SepH) is a recently identified nucleolar oxidoreductase whose function is not well understood. Here we report that seph is an essential gene regulating organ development in zebrafish. Metabolite profiling by targeted LC-MS/MS demonstrated that SepH deficiency impairs redox balance by reducing the levels of ascorbate and methionine, while increasing methionine sulfoxide. Transcriptome analysis revealed that SepH deficiency induces an inflammatory response and activates the p53 pathway. Consequently, loss of seph renders larvae susceptible to oxidative stress and DNA damage. Finally, we demonstrate that seph interacts with p53 deficiency in adulthood to accelerate gastrointestinal tumor development. Overall, our findings establish that seph regulates redox homeostasis and suppresses DNA damage. We hypothesize that SepH deficiency may contribute to the increased cancer risk observed in cohorts with low selenium levels.


Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Neoplasias Gastrointestinales/genética , Selenoproteínas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Neoplasias Gastrointestinales/patología , Regulación Neoplásica de la Expresión Génica , Homeostasis , Humanos , Masculino , Oxidación-Reducción , Estrés Oxidativo/genética , Selenio/metabolismo , Selenoproteínas/metabolismo , Transcriptoma/genética , Pez Cebra/genética
14.
Cell Rep ; 13(7): 1319-1326, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26549444

RESUMEN

Trace elements are essential to all mammals, but their distribution and utilization across species and organs remains unclear. Here, we examined 18 elements in the brain, heart, kidney, and liver of 26 mammalian species and report the elemental composition of these organs, the patterns of utilization across the species, and their correlation with body mass and longevity. Across the organs, we observed distinct distribution patterns for abundant elements, transition metals, and toxic elements. Some elements showed lineage-specific patterns, including reduced selenium utilization in African mole rats, and positive correlation between the number of selenocysteine residues in selenoprotein P and the selenium levels in liver and kidney across mammals. Body mass was linked positively to zinc levels, whereas species lifespan correlated positively with cadmium and negatively with selenium. This study provides insights into the variation of mammalian ionome by organ physiology, lineage specialization, body mass, and longevity.


Asunto(s)
Metaboloma , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Cricetinae , Cobayas , Humanos , Riñón/metabolismo , Hígado/metabolismo , Longevidad , Metales Alcalinos/metabolismo , Metales Pesados/metabolismo , Ratones , Miocardio/metabolismo , Especificidad de Órganos , Fósforo/metabolismo , Ratas , Selenio/metabolismo , Especificidad de la Especie
15.
PLoS One ; 10(10): e0140353, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26452064

RESUMEN

Selenoproteins are a unique group of proteins that contain selenium in the form of selenocysteine (Sec) co-translationally inserted in response to a UGA codon with the help of cis- and trans-acting factors. Mammalian selenoproteins contain single Sec residues, with the exception of selenoprotein P (SelP) that has 7-15 Sec residues depending on species. Assessing an individual's selenium status is important under various pathological conditions, which requires a reliable selenium biomarker. Due to a key role in organismal selenium homeostasis, high Sec content, regulation by dietary selenium, and availability of robust assays in human plasma, SelP has emerged as a major biomarker of selenium status. Here, we found that Cys is present in various Sec positions in human SelP. Treatment of cells expressing SelP with thiophosphate, an analog of the selenium donor for Sec synthesis, led to a nearly complete replacement of Sec with Cys, whereas supplementation of cells with selenium supported Sec insertion. SelP isolated directly from human plasma had up to 8% Cys inserted in place of Sec, depending on the Sec position. These findings suggest that a change in selenium status may be reflected in both SelP concentration and its Sec content, and that availability of the SelP-derived selenium for selenoprotein synthesis may be overestimated under conditions of low selenium status due to replacement of Sec with Cys.


Asunto(s)
Sustitución de Aminoácidos , Cisteína , Dieta , Selenio/farmacología , Selenocisteína , Selenoproteína P/química , Selenoproteína P/genética , Secuencia de Aminoácidos , Células Hep G2 , Humanos , Datos de Secuencia Molecular , Fosfatos/farmacología , Ácido Selenioso/farmacología , Selenoproteína P/metabolismo
16.
Genome Res ; 25(9): 1256-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26194102

RESUMEN

Selenoproteins are proteins that incorporate selenocysteine (Sec), a nonstandard amino acid encoded by UGA, normally a stop codon. Sec synthesis requires the enzyme Selenophosphate synthetase (SPS or SelD), conserved in all prokaryotic and eukaryotic genomes encoding selenoproteins. Here, we study the evolutionary history of SPS genes, providing a map of selenoprotein function spanning the whole tree of life. SPS is itself a selenoprotein in many species, although functionally equivalent homologs that replace the Sec site with cysteine (Cys) are common. Many metazoans, however, possess SPS genes with substitutions other than Sec or Cys (collectively referred to as SPS1). Using complementation assays in fly mutants, we show that these genes share a common function, which appears to be distinct from the synthesis of selenophosphate carried out by the Sec- and Cys- SPS genes (termed SPS2), and unrelated to Sec synthesis. We show here that SPS1 genes originated through a number of independent gene duplications from an ancestral metazoan selenoprotein SPS2 gene that most likely already carried the SPS1 function. Thus, in SPS genes, parallel duplications and subsequent convergent subfunctionalization have resulted in the segregation to different loci of functions initially carried by a single gene. This evolutionary history constitutes a remarkable example of emergence and evolution of gene function, which we have been able to trace thanks to the singular features of SPS genes, wherein the amino acid at a single site determines unequivocally protein function and is intertwined to the evolutionary fate of the entire selenoproteome.


Asunto(s)
Evolución Biológica , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Animales , Biomarcadores , Eucariontes/genética , Eucariontes/metabolismo , Duplicación de Gen , Humanos , Insectos , Filogenia , Células Procariotas/metabolismo , Selección Genética , Selenio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Urocordados , Vertebrados
17.
Biochem Biophys Res Commun ; 461(4): 648-52, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25912135

RESUMEN

Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. (75)Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher Km than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec.


Asunto(s)
Selenio/química , Selenocisteína/química , Tiorredoxinas/química , Treponema denticola/enzimología , Sitios de Unión , Catálisis , Activación Enzimática , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Hum Mol Genet ; 24(5): 1469-77, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25343990

RESUMEN

Selenium (Se) is an essential trace element in human nutrition, but its role in certain health conditions, particularly among Se sufficient populations, is controversial. A genome-wide association study (GWAS) of blood Se concentrations previously identified a locus at 5q14 near BHMT. We performed a GW meta-analysis of toenail Se concentrations, which reflect a longer duration of exposure than blood Se concentrations, including 4162 European descendants from four US cohorts. Toenail Se was measured using neutron activation analysis. We identified a GW-significant locus at 5q14 (P < 1 × 10(-16)), the same locus identified in the published GWAS of blood Se based on independent cohorts. The lead single-nucleotide polymorphism (SNP) explained ∼1% of the variance in toenail Se concentrations. Using GW-summary statistics from both toenail and blood Se, we observed statistical evidence of polygenic overlap (P < 0.001) and meta-analysis of results from studies of either trait (n = 9639) yielded a second GW-significant locus at 21q22.3, harboring CBS (P < 4 × 10(-8)). Proteins encoded by genes at 5q14 and 21q22.3 function in homocysteine (Hcy) metabolism, and index SNPs for each have previously been associated with betaine and Hcy levels in GWAS. Our findings show evidence of a genetic link between Se and Hcy pathways, both involved in cardiometabolic disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Selenio/química , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Genotipo , Técnicas de Genotipaje , Homocisteína/sangre , Humanos , Uñas/química , Polimorfismo de Nucleótido Simple , Selenio/sangre , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismo
19.
Cell ; 160(1-2): 132-44, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25542313

RESUMEN

Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK:


Asunto(s)
Dieta , Sulfuro de Hidrógeno/metabolismo , Animales , Evolución Biológica , Caenorhabditis elegans/fisiología , Restricción Calórica , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Drosophila melanogaster/fisiología , Femenino , Riñón/irrigación sanguínea , Riñón/lesiones , Esperanza de Vida , Hígado/irrigación sanguínea , Hígado/lesiones , Masculino , Metionina/metabolismo , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Daño por Reperfusión , Transducción de Señal , Estrés Fisiológico , Transcriptoma , Levaduras/fisiología
20.
Physiol Rev ; 94(3): 739-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24987004

RESUMEN

Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health.


Asunto(s)
Selenoproteínas/fisiología , Animales , Dipéptidos/biosíntesis , Humanos , Compuestos de Organoselenio , Selenio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA