RESUMEN
The polyamine spermidine is discussed as a caloric restriction mimetic and therapeutic option for obesity and related comorbidities. This study tested oral spermidine supplementation with regard to the systemic, hepatic and pulmonary lipid metabolism under different diet conditions. Male C57BL/6 mice were fed a purified control (CD), high sucrose (HSD) or high fat (HFD) diet with (-S) or without spermidine for 30 weeks. In CD-fed mice, spermidine decreased body and adipose tissue weights and reduced hepatic lipid content. The HSD induced hepatic lipid synthesis and accumulation and hypercholesterolemia. This was not affected by spermidine supplementation, but body weight and blood glucose were lower in HSD-S compared to HSD. HFD-fed mice showed higher body and fat depot weights, prediabetes, hypercholesterolemia and severe liver steatosis, which were not altered by spermidine. Within the liver, spermidine diminished hepatic expression of lipogenic transcription factors SREBF1 and 2 under HSD and HFD and affected the expression of other lipid-related enzymes. In contrast, diet and spermidine exerted only minor effects on pulmonary parameters. Thus, oral spermidine supplementation affects lipid metabolism in a diet-dependent manner, with significant reductions in body fat and weight under physiological nutrition and positive effects on weight and blood glucose under high sucrose intake, but no impact on dietary fat-related parameters.
Asunto(s)
Hipercolesterolemia , Enfermedades Metabólicas , Masculino , Ratones , Animales , Ratones Obesos , Metabolismo de los Lípidos , Espermidina/farmacología , Dieta Alta en Grasa/efectos adversos , Glucemia/metabolismo , Poliaminas/metabolismo , Hipercolesterolemia/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Grasas de la Dieta/metabolismo , Enfermedades Metabólicas/metabolismo , Suplementos Dietéticos , Sacarosa/farmacología , Factores de Transcripción/metabolismoRESUMEN
Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.
Asunto(s)
Espermidina , Telómero , Envejecimiento , Animales , Autofagia , Suplementos Dietéticos , Ratones , Espermidina/farmacologíaRESUMEN
Chlamydia trachomatis causes sexually transmitted diseases with infertility, pelvic inflammatory disease and neonatal pneumonia as complications. The duration of urogenital mouse models with the strict mouse pathogen C. muridarum addressing vaginal shedding, pathological changes of the upper genital tract or infertility is rather long. Moreover, vaginal C. trachomatis application usually does not lead to the complications feared in women. A fast-to-perform mouse model is urgently needed to analyze new antibiotics, vaccine candidates, immune responses (in gene knockout animals) or mutants of C. trachomatis. To complement the valuable urogenital model with a much faster and quantifiable screening method, we established an optimized lung infection model for the human intracellular bacterium C. trachomatis serovar D (and L2) in immunocompetent C57BL/6J mice. We demonstrated its usefulness by sensitive determination of antibiotic effects characterizing advantages and limitations achievable by early or delayed short tetracycline treatment and single-dose azithromycin application. Moreover, we achieved partial acquired protection in reinfection with serovar D indicating usability for vaccine studies, and showed a different course of disease in absence of complement factor C3. Sensitive monitoring parameters were survival rate, body weight, clinical score, bacterial load, histological score, the granulocyte marker myeloperoxidase, IFN-γ, TNF-α, MCP-1 and IL-6.
Asunto(s)
Antibacterianos/uso terapéutico , Vacunas Bacterianas/inmunología , Chlamydia trachomatis/efectos de los fármacos , Chlamydia trachomatis/fisiología , Neumonía por Clamidia/tratamiento farmacológico , Neumonía por Clamidia/prevención & control , Interacciones Huésped-Patógeno , Animales , Antibacterianos/farmacología , Carga Bacteriana , Biopsia , Línea Celular , Neumonía por Clamidia/microbiología , Neumonía por Clamidia/mortalidad , Complemento C3/genética , Complemento C3/inmunología , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunoglobulina G/inmunología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Noqueados , Peroxidasa/metabolismoRESUMEN
HYPOTHESIS: The present study was performed to examine the impact of the release rate of ciprofloxacin from prostheses coated with nanoporous silica layers on the outcome of an acute bacterial infection of the middle ear of rabbits. BACKGROUND: Middle ear prostheses are often implanted in an infectious environment because of chronic otitis media and cholesteatoma. Bacterial colonization leads to healing disorders after surgery and may lead to the extrusion of the implants. Nanoporous silica layers appear promising as a drug delivery system for antibiotics placed on implants. Before clinical applications can be envisioned, it is necessary to find an optimal release rate. METHODS: White New Zealand rabbits were provided unilaterally with either a "slow release" or a "burst release" ciprofloxacin-containing middle ear Bioverit II prosthesis. After implantation, the middle ears were infected with a solution of Pseudomonas aeruginosa. Afterwards, animals were monitored clinically and, after 3 months, sacrificed to perform necropsy and microbiologic examinations. RESULTS: In the "slow release" group, 7 of 12 animals had to be euthanized preterm because of their poor clinical condition compared with 2 of 12 animals of the "burst release" group (p < 0.05). Clinical and microbiologic examination also showed a better outcome for animals of the burst release group. CONCLUSION: A burst release of ciprofloxacin from middle ear implants is important to combat a perioperative infection with Ps. aeruginosa in the middle ear model of the rabbit.