Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 76(9): 2325-2334, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34179977

RESUMEN

BACKGROUND: The efficacy of artemisinin-based combination therapies (ACTs), the first-line treatments for uncomplicated falciparum malaria, has been declining in malaria-endemic countries due to the emergence of malaria parasites resistant to these compounds. Novel alternative therapies are needed urgently to prevent the likely surge in morbidity and mortality due to failing ACTs. OBJECTIVES: This study investigates the efficacy of the combination of two novel drugs, OZ439 and DSM265, using a biologically informed within-host mathematical model. METHODS: A within-host model was developed, which accounts for the differential killing of these compounds against different stages of the parasite's life cycle and accommodates the pharmacodynamic interaction between the drugs. Data of healthy volunteers infected with falciparum malaria collected from four trials (three that administered OZ439 and DSM265 alone, and the fourth a combination of OZ439 and DSM265) were analysed. Model parameters were estimated in a hierarchical Bayesian framework. RESULTS: The posterior predictive simulations of our model predicted that 800 mg of OZ439 combined with 450 mg of DSM265, which are within the safe and tolerable dose range, can provide above 90% cure rates 42 days after drug administration. CONCLUSIONS: Our results show that the combination of OZ439 and DSM265 can be a promising alternative to replace ACTs. Our model can be used to inform future Phase 2 and 3 clinical trials of OZ439/DSM265, fast-tracking the deployment of this combination therapy in the regions where ACTs are failing. The dosing regimens that are shown to be efficacious and within safe and tolerable limits are suggested for future investigations.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Pirimidinas/farmacocinética , Triazoles/farmacocinética , Antimaláricos/uso terapéutico , Teorema de Bayes , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum
2.
ACS Infect Dis ; 6(1): 3-13, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31808676

RESUMEN

In May 2019, the Wellcome Centre for Anti-Infectives Research (WCAIR) at the University of Dundee, UK, held an international conference with the aim of discussing some key questions around discovering new medicines for infectious diseases and a particular focus on diseases affecting Low and Middle Income Countries. There is an urgent need for new drugs to treat most infectious diseases. We were keen to see if there were lessons that we could learn across different disease areas and between the preclinical and clinical phases with the aim of exploring how we can improve and speed up the drug discovery, translational, and clinical development processes. We started with an introductory session on the current situation and then worked backward from clinical development to combination therapy, pharmacokinetic/pharmacodynamic (PK/PD) studies, drug discovery pathways, and new starting points and targets. This Viewpoint aims to capture some of the learnings.


Asunto(s)
Control de Enfermedades Transmisibles , Enfermedades Transmisibles/tratamiento farmacológico , Congresos como Asunto , Terapia Combinada , Enfermedades Transmisibles/epidemiología , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Infecciones por VIH/tratamiento farmacológico , Humanos , Pobreza , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA