Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9195, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649707

RESUMEN

The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, ß-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.


Asunto(s)
Acorus , Antioxidantes , Carum , Cymbopogon , Aceites Volátiles , Extractos Vegetales , Cymbopogon/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Acorus/química , Carum/química , Cromatografía de Gases y Espectrometría de Masas , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología
2.
Heliyon ; 9(11): e21222, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38053906

RESUMEN

Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 µg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 µg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 µg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 µg/mL) and fenchone (69.03 ± 2.31 µg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 µg/mL) and camphor (48.39 ± 1.92 µg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 µg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 µg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 µg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 µg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.

4.
Curr Pharm Des ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559241

RESUMEN

The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the Asteraceae family (Silybum marianum, Cynara scolymus, Arctium lappa, Helichrysum spp, Inula helenium, and Taraxacum officinale). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the Silybum marianum seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.

5.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446751

RESUMEN

Biofunctional molecules with pharmacological activities are reported in various fields of application, including in the pharmaceutical, cosmetics, nutraceuticals, agriculture, and food industries [...].


Asunto(s)
Suplementos Dietéticos , Industria de Alimentos , Agricultura
6.
Mol Omics ; 19(10): 769-786, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37498608

RESUMEN

Chinese herbal medicine (CHM) exhibits a broad spectrum of clinical applications and demonstrates favorable therapeutic efficacy. Nonetheless, elucidating the underlying mechanism of action (MOA) of CHM in disease treatment remains a formidable task due to its inherent characteristics of multi-level, multi-linked, and multi-dimensional non-linear synergistic actions. In recent years, the concept of a Quality marker (Q-marker) proposed by Liu et al. has significantly contributed to the monitoring and evaluation of CHM products, thereby fostering the advancement of CHM research. Within this study, a Q-marker screening strategy for CHM formulas has been introduced, particularly emphasising efficacy and biological activities, integrating absorption, distribution, metabolism, and excretion (ADME) studies, systems biology, and experimental verification. As an illustrative case, the Q-marker screening of Qianghuo Shengshi decoction (QHSSD) for treating rheumatoid arthritis (RA) has been conducted. Consequently, from a pool of 159 compounds within QHSSD, five Q-markers exhibiting significant in vitro anti-inflammatory effects have been identified. These Q-markers encompass notopterol, isoliquiritin, imperatorin, cimifugin, and glycyrrhizic acid. Furthermore, by employing an integrated analysis of network pharmacology and metabolomics, several instructive insights into pharmacological mechanisms have been gleaned. This includes the identification of key targets and pathways through which QHSSD exerts its crucial roles in the treatment of RA. Notably, the inhibitory effect of QHSSD on AKT1 and MAPK3 activation has been validated through western blot analysis, underscoring its potential to mitigate RA-related inflammatory responses. In summary, this research demonstrates the proposed strategy's feasibility and provides a practical reference model for the systematic investigation of CHM formulas.


Asunto(s)
Artritis Reumatoide , Medicamentos Herbarios Chinos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Biología de Sistemas , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Metabolómica
7.
Front Pharmacol ; 14: 1182937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408757

RESUMEN

Obesity affects more than 10% of the adult population globally. Despite the introduction of diverse medications aimed at combating fat accumulation and obesity, a significant number of these pharmaceutical interventions are linked to substantial occurrences of severe adverse events, occasionally leading to their withdrawal from the market. Natural products serve as attractive sources for anti-obesity agents as many of them can alter the host metabolic processes and maintain glucose homeostasis via metabolic and thermogenic stimulation, appetite regulation, pancreatic lipase and amylase inhibition, insulin sensitivity enhancing, adipogenesis inhibition and adipocyte apoptosis induction. In this review, we shed light on the biological processes that control energy balance and thermogenesis as well as metabolic pathways in white adipose tissue browning, we also highlight the anti-obesity potential of natural products with their mechanism of action. Based on previous findings, the crucial proteins and molecular pathways involved in adipose tissue browning and lipolysis induction are uncoupling protein-1, PR domain containing 16, and peroxisome proliferator-activated receptor-γ in addition to Sirtuin-1 and AMP-activated protein kinase pathway. Given that some phytochemicals can also lower proinflammatory substances like TNF-α, IL-6, and IL-1 secreted from adipose tissue and change the production of adipokines like leptin and adiponectin, which are important regulators of body weight, natural products represent a treasure trove for anti-obesity agents. In conclusion, conducting comprehensive research on natural products holds the potential to accelerate the development of an improved obesity management strategy characterized by heightened efficacy and reduced incidence of side effects.

8.
Front Plant Sci ; 13: 999270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247633

RESUMEN

The tropical fruit industry in Malaysia makes up a large proportion of the agriculture sector, contributing to the local economy. Due to their high sugar and water content, tropical fruits are prone to pathogenic infections, providing optimal microorganism growth conditions. As one of the largest exporters of these fruits globally, following other Southeast Asian countries such as Thailand, Indonesia and the Philippines, the quality control of exported goods is of great interest to farmers and entrepreneurs. Traditional methods of managing diseases in fruits depend on chemical pesticides, which have attracted much negative perception due to their questionable safety. Therefore, the use of natural products as organic pesticides has been considered a generally safer alternative. The extracts of aromatic plants, known as essential oils or plant extracts, have garnered much interest, especially in Asian regions, due to their historical use in traditional medicine. In addition, the presence of antimicrobial compounds further advocates the assessment of these extracts for use in crop disease prevention and control. Herein, we reviewed the current developments and understanding of the use of essential oils and plant extracts in crop disease management, mainly focusing on tropical fruits. Studies reviewed suggest that essential oils and plant extracts can be effective at preventing fungal and bacterial infections, as well as controlling crop disease progression at the pre and postharvest stages of the tropical fruit supply chain. Positive results from edible coatings and as juice preservatives formulated with essential oils and plant extracts also point towards the potential for commercial use in the industry as more chemically safe and environmentally friendly biopesticides.

9.
J Control Release ; 345: 231-274, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306119

RESUMEN

Despite its wide establishment over the years, iron oxide nanoparticle (IONP) still draws extensive interest in the biomedical fields due to its biocompatibility, biodegradability, magnetivity and surface tunable properties. IONP has been used for the MRI, magnetic targeting, drug delivery and hyperthermia of various diseases. However, their poor stability, low diagnostic sensitivity and low disease-specificity have resulted in unsatisfying diagnostic and therapeutic outputs. The surface functionalization of IONP with biocompatible and colloidally stable components appears to be promising to improve its circulation and colloidal stability. Importantly, through surface functionalization with designated functional components, IONP-based assemblies with multiple stimuli-responsivity could be formed to achieve an accurate and efficient delivery of IONP to disease sites for an improved disease diagnosis and therapy. In this work, we first described the design of biocompatible and stable IONP assemblies. Further, their stimuli-driven manipulation strategies are reviewed. Next, the utilization of IONP assemblies for disease diagnosis, therapy and imaging-guided therapy are discussed. Then, the potential toxicity of IONPs and their clinical usages are described. Finally, the intrinsic challenges and future outlooks of IONP assemblies are commented. This review provides recent insights into IONP assemblies, which could inspire researchers on the future development of multi-responsive and disease-targetable nanoassemblies for biomedical utilization.


Asunto(s)
Compuestos Férricos , Hipertermia Inducida , Sistemas de Liberación de Medicamentos , Compuestos Férricos/uso terapéutico , Nanopartículas Magnéticas de Óxido de Hierro , Magnetismo
10.
Biology (Basel) ; 11(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35205173

RESUMEN

Plant-derived terpenes are the prolific source of modern drugs such as taxol, chloroquine and artemisinin, which are widely used to treat cancer and malaria infections. There are research interests in recent years on terpene-derived metabolites (diterpenes, triterpenes and sesquiterpenes), which are believed to serve as excellent cholinesterase inhibitors. As cholinesterase inhibitors are the current treatment for Alzheimer's disease, terpene-derived metabolites will have the potential to be involved in the future drug development for Alzheimer's disease. Hence, a bibliographic search was conducted by using the keywords "terpene", "cholinesterase" and "Alzheimer's disease", along with cross-referencing from 2011 to 2020, to provide an overview of natural terpenes with potential anticholinesterase properties. This review focuses on the extraction, chemical structures and anti-cholinesterase mechanisms of terpenes, which support and encourage future research on drug discovery and development in treating Alzheimer's disease.

11.
Molecules ; 27(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35011516

RESUMEN

Grifolin is a volatile compound contained in essential oils of several medicinal plants. Several studies show that this substance has been the subject of numerous pharmacological investigations, which have yielded interesting results. Grifolin demonstrated beneficial effects for health via its multiple pharmacological activities. It has anti-microbial properties against bacteria, fungi, and parasites. In addition, grifolin exhibited remarkable anti-cancer effects on different human cancer cells. The anticancer action of this molecule is related to its ability to act at cellular and molecular levels on different checkpoints controlling the signaling pathways of human cancer cell lines. Grifolin can induce apoptosis, cell cycle arrest, autophagy, and senescence in these cells. Despite its major pharmacological properties, grifolin has only been investigated in vitro and in vivo. Therefore, further investigations concerning pharmacodynamic and pharmacokinetic tests are required for any possible pharmaceutical application of this substance. Moreover, toxicological tests and other investigations involving humans as a study model are required to validate the safety and clinical applications of grifolin.


Asunto(s)
Antineoplásicos , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias , Transducción de Señal/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Terpenos/química , Terpenos/farmacocinética , Terpenos/uso terapéutico
12.
Antioxidants (Basel) ; 10(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34829642

RESUMEN

Spondias species have been used in traditional medicine for different human ailments. In this study, the effect of different solvents (ethyl acetate, methanol, and water) and extraction methods (infusion, maceration, and Soxhlet extraction) on the enzyme inhibitory activity against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase, α-glucosidase, and antioxidant properties of S. mombin and S. dulcis leaves and stem bark were evaluated. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) yield in the identification and/or annotation of 98 compounds showing that the main secondary metabolites of the plant are gallic and ellagic acids and their derivatives, ellagitannins, hydroxybenzoic, hydroxycinnamic, acylquinic acids and flavonols, flavanones, and flavanonols. The leaves infusion of both Spondias species showed highest inhibition against acetylcholinesterase (AChE) (10.10 and 10.45 mg galantamine equivalent (GALAE)/g, for S. dulcis and S. mombin, respectively). The ethyl acetate extracts of the stem bark of S. mombin and S. dulcis actively inhibited α-glucosidase. Methanolic extracts of the leaves and stem bark exhibited highest tyrosinase inhibitory action. Antioxidant activity and higher levels of phenolics were observed for the methanolic extracts of Spondias. The results suggested that the Spondias species could be considered as natural phyto-therapeutic agents in medicinal and cosmeceutical applications.

13.
Biomed Pharmacother ; 143: 112182, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649338

RESUMEN

Nigella sativa L. is one of the most extensively used traditional medicinal plants. This widely studied plant is known to display diverse pharmacological actions, including antimicrobial activities. Current literature has documented its multi-target mode of antimicrobial actions. N. sativa or its bioactive compounds, such as thymoquinone, can induce oxidative stress, cell apoptosis (by producing reactive oxygen species), increase membrane permeability, inhibit efflux pumps, and impose strong biocidal actions. Despite its well-documented antimicrobial efficacy in the experimental model, to the best of our knowledge its antimicrobial mechanisms highlighting the multi-targeting properties have yet to be well discussed. Is N. sativa or thymoquinone a valuable lead compound for therapeutic development for infectious diseases? Are N. sativa's bioactive compounds potential antimicrobial agents or able to overcome antimicrobial resistance? This review aims to discuss the antimicrobial pharmacology of N. sativa-based treatments. Additionally, it provides a holistic overview of the ethnobotany, ethnopharmacology, and phytochemistry of N. sativa.


Asunto(s)
Antiinfecciosos/farmacología , Etnobotánica , Nigella sativa , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Animales , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/toxicidad , Farmacorresistencia Microbiana , Humanos , Nigella sativa/química , Seguridad del Paciente , Fitoquímicos/aislamiento & purificación , Fitoquímicos/toxicidad , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Medición de Riesgo , Semillas
14.
Molecules ; 26(14)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34299604

RESUMEN

The rise in cancer cases in recent years is an alarming situation worldwide. Despite the tremendous research and invention of new cancer therapies, the clinical outcomes are not always reassuring. Cancer cells could develop several evasive mechanisms for their survivability and render therapeutic failure. The continuous use of conventional cancer therapies leads to chemoresistance, and a higher dose of treatment results in even greater toxicities among cancer patients. Therefore, the search for an alternative treatment modality is crucial to break this viscous cycle. This paper explores the suitability of curcumin combination treatment with other cancer therapies to curb cancer growth. We provide a critical insight to the mechanisms of action of curcumin, its role in combination therapy in various cancers, along with the molecular targets involved. Curcumin combination treatments were found to enhance anticancer effects, mediated by the multitargeting of several signalling pathways by curcumin and the co-administered cancer therapies. The preclinical and clinical evidence in curcumin combination therapy is critically analysed, and the future research direction of curcumin combination therapy is discussed.


Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Curcumina/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Curcumina/farmacología , Humanos , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Molecules ; 26(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916053

RESUMEN

In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.


Asunto(s)
Meliaceae/química , Extractos Vegetales/farmacología , Semillas/química , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Productos Biológicos/química , Productos Biológicos/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cromatografía Liquida , Cosméticos , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/efectos de la radiación , Perfilación de la Expresión Génica/métodos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Espectrometría de Masas , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/química , Proteómica/métodos
16.
Biology (Basel) ; 10(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916114

RESUMEN

Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.

17.
J Evid Based Integr Med ; 26: 2515690X21996662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33787349

RESUMEN

The management of the global pandemic outbreak due to the coronavirus disease (COVID-19) has been challenging with no exact dedicated treatment nor established vaccines at the beginning of the pandemic. Nonetheless, the situation seems to be better controlled with the recent COVID-19 vaccines roll-out globally as active immunisation to prevent COVID-19. The extensive usage and trials done in recent outbreak in China has shown the effectiveness of traditional Chinese Medicines (TCM) in improving the wellbeing of COVID-19 patients. Therefore, COVID-19 Prevention and Treatment guidelines has listed a number of recommended concoctions meant for COVID-19 patients. Licorice, more commonly known as Gancao in Chinese Pinyin, is known as one of the most frequently used ingredients in TCM prescriptions for treatment of epidemic diseases. Interestingly, it is deemed as food ingredient as well, where it is normally used in Western cuisines' desserts and sweets. The surprising fact that licorice appeared in the top 10 main ingredients used in TCM prescriptions in COVID-19 has drawn great attention from researchers in revealing its biological potential in overcoming this disease. To date, there are no comprehensive review on licorice and its benefits when used in COVID-19. Thus, in this current review, the possible benefits, mechanism of actions, safety and limitations of licorice were explored in hope to provide a quick reference guide for its preclinical and clinical experimental set-up in this very critical moment of pandemic.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/uso terapéutico , Glycyrrhiza , Fitoterapia/métodos , SARS-CoV-2/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Glycyrrhiza/química , Humanos
18.
Molecules ; 27(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35011441

RESUMEN

Coriandrum sativum (C. sativum), belonging to the Apiaceae (Umbelliferae) family, is widely recognized for its uses in culinary and traditional medicine. C. sativum contains various phytochemicals such as polyphenols, vitamins, and many phytosterols, which account for its properties including anticancer, anti-inflammatory, antidiabetic, and analgesic effects. The cardiovascular benefits of C. sativum have not been summarized before, hence this review aims to further evaluate and discuss its effectiveness in cardiovascular diseases, according to the recent literature. An electronic search for literature was carried out using the following databases: PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews. Articles were gathered from the inception of the database until August 2021. Moreover, the traditional uses and phytochemistry of coriander were surveyed in the original resources and summarized. As a result, most of the studies that cover cardiovascular benefits and fulfilled the eligibility criteria were in vivo, while only a few were in vitro and clinical studies. In conclusion, C. sativum can be deemed a functional food due to its wide range of cardiovascular benefits such as antihypertensive, anti-atherogenic, antiarrhythmic, hypolipidemic as well as cardioprotective effects.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Coriandrum/química , Etnofarmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Animales , Coriandrum/clasificación , Etnofarmacología/métodos , Alimentos Funcionales , Evaluación del Impacto en la Salud , Humanos , Medicina Tradicional , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Relación Estructura-Actividad
19.
Front Pharmacol ; 11: 366, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372949

RESUMEN

Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects via both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments via the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-ß/BMP, Wnt/ß-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.

20.
Int J Biol Macromol ; 127: 76-84, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30639596

RESUMEN

Stimuli-responsive drug release and controlled delivery play crucial roles in enhancing the therapeutic efficacy and lowering over-dosage induced side effects. In this paper, we report magnetically-triggered drug release and in-vitro anti-colon cancer efficacy of Fe3O4@cellulose nanocrystal (MCNC)-stabilized Pickering emulsions containing curcumin (CUR). The loading efficiency of CUR in the micron-sized (≈7 µm) MCNC-stabilized Pickering emulsions (MCNC-PE) template was found to be 99.35%. The drug release profiles showed that the exposure of MCNC-PE to external magnetic field (EMF) (0.7 T) stimulated the release of bioactive from MCNC-PE achieving 53.30 ±â€¯5.08% of the initial loading over a 4-day period. The MTT assay demonstrated that the CUR-loaded MCNC-PE can effectively inhibits the human colon cancer cells growth down to 18% in the presence of EMF. The formulation also resulted in 2-fold reduction on the volume of the 3-D multicellular spheroids of HCT116 as compared to the control sample. The MCNC particle was found to be non-toxic to brine shrimp up to a concentration of 100 µg/mL. Our findings suggested that the palm-based MCNC-PE could be a promising yet effective colloidal drug delivery system for magnetic-triggered release of bioactive and therapeutics.


Asunto(s)
Celulosa , Neoplasias del Colon , Curcumina , Portadores de Fármacos , Nanopartículas de Magnetita , Nanopartículas , Celulosa/química , Celulosa/farmacocinética , Celulosa/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Emulsiones , Células HCT116 , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA