Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioelectromagnetics ; 40(7): 498-511, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31522469

RESUMEN

Despite much research, gaps remain in knowledge about the potential health effects of exposure to radiofrequency (RF) fields. This study investigated the effects of early-life exposure to pulsed long term evolution (LTE) 1,846 MHz downlink signals on innate mouse behavior. Animals were exposed for 30 min/day, 5 days/week at a whole-body average specific energy absorption rate (SAR) of 0.5 or 1 W/kg from late pregnancy (gestation day 13.5) to weaning (postnatal day 21). A behavioral tracking system measured locomotor, drinking, and feeding behavior in the home cage from 12 to 28 weeks of age. The exposure caused significant effects on both appetitive behaviors and activity of offspring that depended on the SAR. Compared with sham-exposed controls, exposure at 0.5 W/kg significantly decreased drinking frequency (P ≤ 0.000) and significantly decreased distance moved (P ≤ 0.001). In contrast, exposure at 1 W/kg significantly increased drinking frequency (P ≤ 0.001) and significantly increased moving duration (P ≤ 0.005). In the absence of other plausible explanations, it is concluded that repeated exposure to low-level RF fields in early life may have a persistent and long-term effect on adult behavior. Bioelectromagnetics. 2019;40:498-511. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Ondas de Radio/efectos adversos , Animales , Conducta Animal/efectos de la radiación , Peso Corporal/efectos de la radiación , Simulación por Computador , Femenino , Aprendizaje/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Factores de Tiempo , Irradiación Corporal Total
2.
Bioelectromagnetics ; 38(4): 280-294, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28324620

RESUMEN

Laboratory measurements of electric fields have been carried out around examples of smart meter devices used in Great Britain. The aim was to quantify exposure of people to radiofrequency signals emitted from smart meter devices operating at 2.4 GHz, and then to compare this with international (ICNIRP) health-related guidelines and with exposures from other telecommunication sources such as mobile phones and Wi-Fi devices. The angular distribution of the electric fields from a sample of 39 smart meter devices was measured in a controlled laboratory environment. The angular direction where the power density was greatest was identified and the equivalent isotropically radiated power was determined in the same direction. Finally, measurements were carried out as a function of distance at the angles where maximum field strengths were recorded around each device. The maximum equivalent power density measured during transmission around smart meter devices at 0.5 m and beyond was 15 mWm-2 , with an estimation of maximum duty factor of only 1%. One outlier device had a maximum power density of 91 mWm-2 . All power density measurements reported in this study were well below the 10 W m-2 ICNIRP reference level for the general public. Bioelectromagnetics. 2017;38:280-294. © 2017 Crown copyright. BIOELECTROMAGNETICS © 2017 Wiley Periodicals, Inc.


Asunto(s)
Electricidad , Campos Electromagnéticos , Laboratorios , Exposición a la Radiación/análisis , Calibración , Humanos , Ondas de Radio , Programas Informáticos , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA