Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 237(6): 2054-2068, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36226674

RESUMEN

Spatial redistribution of nutrients by atmospheric transport and deposition could theoretically act as a continental-scale mechanism which counteracts declines in soil fertility caused by nutrient lock-up in accumulating biomass in tropical forests in Central Africa. However, to what extent it affects carbon sinks in forests remains elusive. Here we use a terrestrial biosphere model to quantify the impact of changes in atmospheric nitrogen and phosphorus deposition on plant nutrition and biomass carbon sink at a typical lowland forest site in Central Africa. We find that the increase in nutrient deposition since the 1980s could have contributed to the carbon sink over the past four decades up to an extent which is similar to that from the combined effects of increasing atmospheric carbon dioxide and climate change. Furthermore, we find that the modelled carbon sink responds to changes in phosphorus deposition, but less so to nitrogen deposition. The pronounced response of ecosystem productivity to changes in nutrient deposition illustrates a potential mechanism that could control carbon sinks in Central Africa. Monitoring the quantity and quality of nutrient deposition is needed in this region, given the changes in nutrient deposition due to human land use.


Asunto(s)
Secuestro de Carbono , Ecosistema , Humanos , Árboles/fisiología , Fósforo , Bosques , Suelo , Nitrógeno , África Central , Clima Tropical
2.
Nat Commun ; 13(1): 5005, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008385

RESUMEN

Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.


Asunto(s)
Bosques , Fósforo , Carbono , Fotosíntesis , Hojas de la Planta/fisiología , Árboles/fisiología
3.
New Phytol ; 233(1): 169-181, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614196

RESUMEN

Consistent information on the current elemental composition of vegetation at global scale and the variables that determine it is lacking. To fill this gap, we gathered a total of 30 912 georeferenced records on woody plants foliar concentrations of nitrogen (N), phosphorus (P) and potassium (K) from published databases, and produced global maps of foliar N, P and K concentrations for woody plants using neural networks at a resolution of 1 km2 . We used data for climate, atmospheric deposition, soil and morphoclimatic groups to train the neural networks. Foliar N, P and K do not follow clear global latitudinal patterns but are consistent with the hypothesis of soil substrate age. We additionally built generalized linear mixed models to investigate the evolutionary history effect together with the effects of environmental effects. In this comparison, evolutionary history effects explained most of the variability in all cases (mostly > 60%). These results emphasize the determinant role of evolutionary history in foliar elemental composition, which should be incorporated in upcoming dynamic global vegetation models.


Asunto(s)
Ecosistema , Hojas de la Planta , Bosques , Nitrógeno/análisis , Fósforo , Hojas de la Planta/química , Suelo
4.
Glob Chang Biol ; 28(4): 1678-1689, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34787937

RESUMEN

Soil phosphorus (P) availability often limits plant productivity. Classical theories suggest that total P content declines at the temporal scale of pedogenesis, and ecosystems develop toward the efficient use of scarce P during succession. However, the trajectory of ecosystem P within shorter time scales of succession remains unclear. We analyzed changes to P pools at the early (I), middle (II), and late (III) stages of growth of plantation forests (PFs) and the successional stages of natural forests (NFs) at 1969 sites in China. We found significantly lower P contents at later growth stages compared to earlier ones in the PF (p < .05), but higher contents at late successional stages than in earlier stages in the NF (p < .05). Our results indicate that increasing P demand of natural vegetation during succession, may raise, retain, and accumulate P from deeper soil layers. In contrast, ecosystem P in PF was depleted by the more rapidly increasing demand outpacing the development of a P-efficient system. We advocate for more studies to illuminate the mechanisms for determining the divergent changes, which would improve forest management and avoid the vast degradation of PF ecosystems suffering from the ongoing depletion of P.


Asunto(s)
Ecosistema , Suelo , China , Bosques , Fósforo , Árboles
5.
Nat Commun ; 11(1): 355, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953430

RESUMEN

Global fish production (capture and aquaculture) has increased quickly, which has altered global flows of phosphorus (P). Here we show that in 2016, [Formula: see text] Tg P yr-1 (mean and interquartile range) was applied in aquaculture to increase fish production; while [Formula: see text] Tg P yr-1 was removed from aquatic systems by fish harvesting. Between 1950 and 1986, P from fish production went from aquatic towards the land-human systems. This landward P peaked at 0.54 Tg P yr-1, representing a large but overlooked P flux that might benefit land activities under P scarcity. After 1986, the landward P flux decreased significantly, and became negative around 2004, meaning that humans spend more P to produce fish than harvest P in fish capture. An idealized pathway to return to the balanced anthropogenic P flow would require the mean phosphorus use efficiency (the ratio of harvested to input P) of aquaculture to be increased from a current value of 20% to at least 48% by 2050 - a big challenge.


Asunto(s)
Productos Agrícolas , Explotaciones Pesqueras , Fósforo , Contaminantes Químicos del Agua/análisis , Animales , Bases de Datos Factuales , Ecología , Peces , Agua Dulce/química , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Alimentos Marinos , Contaminantes Químicos del Agua/historia
6.
Glob Chang Biol ; 23(11): 4854-4872, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28513916

RESUMEN

Spatial patterns and temporal trends of nitrogen (N) and phosphorus (P) deposition are important for quantifying their impact on forest carbon (C) uptake. In a first step, we modeled historical and future change in the global distributions of the atmospheric deposition of N and P from the dry and wet deposition of aerosols and gases containing N and P. Future projections were compared between two scenarios with contrasting aerosol emissions. Modeled fields of N and P deposition and P concentration were evaluated using globally distributed in situ measurements. N deposition peaked around 1990 in European forests and around 2010 in East Asian forests, and both increased sevenfold relative to 1850. P deposition peaked around 2010 in South Asian forests and increased 3.5-fold relative to 1850. In a second step, we estimated the change in C storage in forests due to the fertilization by deposited N and P (∆Cν dep ), based on the retention of deposited nutrients, their allocation within plants, and C:N and C:P stoichiometry. ∆Cν dep for 1997-2013 was estimated to be 0.27 ± 0.13 Pg C year-1 from N and 0.054 ± 0.10 Pg C year-1 from P, contributing 9% and 2% of the terrestrial C sink, respectively. Sensitivity tests show that uncertainty of ∆Cν dep was larger from P than from N, mainly due to uncertainty in the fraction of deposited P that is fixed by soil. ∆CPdep was exceeded by ∆CNdep over 1960-2007 in a large area of East Asian and West European forests due to a faster growth in N deposition than P. Our results suggest a significant contribution of anthropogenic P deposition to C storage, and additional sources of N are needed to support C storage by P in some Asian tropical forests where the deposition rate increased even faster for P than for N.


Asunto(s)
Secuestro de Carbono , Bosques , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Modelos Biológicos , Estaciones del Año , Factores de Tiempo
7.
New Phytol ; 209(1): 17-28, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26249015

RESUMEN

The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.


Asunto(s)
Dióxido de Carbono/farmacología , Eucalyptus/fisiología , Modelos Teóricos , Árboles/fisiología , Atmósfera , Australia , Biodiversidad , Brasil , Clima , Deshidratación , Inglaterra , Eucalyptus/efectos de los fármacos , Bosques , Fósforo/deficiencia , Bosque Lluvioso , Suelo , Árboles/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA