Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Life Sci ; 180: 42-50, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28501483

RESUMEN

Physiopathological conditions such as acute liver failure (ALF) induced by acetaminophen (APAP) can often impair the mitochondrial bioenergetics. Diphenyl diselenide [(PhSe)2] has been shown protects against APAP-induced ALF. The present study aimed to clarify the signaling mechanism involved in the protection of bioenergetics dysfunction associated with ALF-induced by APAP overdose. Mice received APAP (600mg/kg) or (PhSe)2 (15.6mg/kg) alone, or APAP+(PhSe)2, all the solutions were administered by the intraperitoneal (i.p.). Samples of liver, blood and liver mitochondria were collected at 2 and 4h after APAP administration. APAP-induced ALF was able to induce ALF by means of alteration on liver injury biomarkers, increased Nitrite and Nitrate levels and the impairment of oxidative phosphorylation capacity (OXPHOS). In parallel, APAP overdose promoted activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Heat shock protein 70 (HSP70) expression. (PhSe)2 was able to abolish the APAP-induced decline of OXPHOS and changes on the Nrf2-ARE pathway. In addition, (PhSe)2 elevated the levels of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α), helping to restore the levels of nuclear respiratory factor 1 (NRF1) associated with mitochondrial biogenesis. In summary, the treatment with (PhSe)2 maintained mitochondrial function, promoted genes related to mitochondrial dynamic and demonstrating to play critical role in the modulation of cellular protective responses during ALF.


Asunto(s)
Acetaminofén/toxicidad , Derivados del Benceno/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Metabolismo Energético/efectos de los fármacos , Fallo Hepático Agudo/prevención & control , Compuestos de Organoselenio/farmacología , Acetaminofén/administración & dosificación , Animales , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Sobredosis de Droga , Proteínas HSP70 de Choque Térmico/metabolismo , Fallo Hepático Agudo/inducido químicamente , Masculino , Ratones , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Tiempo
2.
Brain Res Bull ; 118: 78-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26393778

RESUMEN

PURPOSE: To evaluate the toxicity of chronic consumption of processed foods that are rich in trans fat on the lipid composition of brain membranes, as well as its functional repercussions. METHODS: A second generation of male rats born from mothers and grandmothers supplemented with soybean oil (SOC, an isocaloric control group) or hydrogenated vegetable fat (HVF, rich in TFA) (3g/kg; p.o.) were kept under oral treatment until 90 days of age, when they were exposed to an AMPH-induced model of mania. RESULTS: The HVF group presented 0.38% of TFA incorporation in the striatum, affecting Na(+)/K(+) ATPase activity, which was decreased per se and following AMPH-exposure. The HVF group also showed increased protein carbonyl (PC) and brain-derived neurotrophic factor (BDNF) mRNA levels after AMPH administration, while these oxidative and molecular changes were not observed in the other experimental groups. Additionally, a negative correlation between striatal Na(+)/K(+) ATPase activity and PC levels (r(2)=0.49) was observed. CONCLUSION: The prolonged consumption of trans fat allows TFA incorporation and increases striatal oxidative status, thus impairing the functionality of Na(+)/K(+)-ATPase and affecting molecular targets as BDNF mRNA. We hypothesized that the chronic intake of processed foods (rich in TFA) facilitates the development of neuropsychiatric diseases, particularly bipolar disorder.


Asunto(s)
Trastorno Bipolar/metabolismo , Encéfalo/metabolismo , ARN Mensajero/biosíntesis , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ácidos Grasos trans/toxicidad , Anfetamina/farmacología , Animales , Trastorno Bipolar/inducido químicamente , Trastorno Bipolar/enzimología , Trastorno Bipolar/genética , Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Expresión Génica , Masculino , Membranas/metabolismo , Actividad Motora/efectos de los fármacos , Carbonilación Proteica , ARN Mensajero/genética , Ratas , Aceite de Soja/administración & dosificación , Ácidos Grasos trans/administración & dosificación , Ácidos Grasos trans/metabolismo
3.
Hippocampus ; 25(5): 556-65, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25394793

RESUMEN

Recently, we have described the influence of dietary fatty acids (FA) on mania-like behavior of first generation animals. Here, two sequential generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy and during lactation. In adulthood, half of each group was exposed to an amphetamine (AMPH)-induced mania animal model for behavioral, biochemical and molecular assessments. FO supplementation was associated with lower reactive species (RS) generation and protein carbonyl (PC) levels and increased dopamine transporter (DAT) levels, while HVF increased RS and PC levels, thus decreasing catalase (CAT) activity and DAT levels in hippocampus after AMPH treatment. AMPH impaired short- (1 h) and long- (24 h) term memory in the HVF group. AMPH exposure was able to reduce hippocampal BDNF- mRNA expression, which was increased in FO. While HVF was related to higher trans FA (TFA) incorporation in hippocampus, FO was associated with increased percentage of n-3 polyunsaturated FA (PUFA) together with lower n-6/n-3 PUFA ratio. Interestingly, our data showed a positive correlation between brain-derived neurotrophic factor (BDNF) mRNA and short- and long-term memory (r(2) = 0.53; P = 0.000/r(2) = 0.32; P = 0.011, respectively), as well as a negative correlation between PC and DAT levels (r(2) = 0.23; P = 0.015). Our findings confirm that provision of n-3 or TFA during development over two generations is able to change the neuronal membrane lipid composition, protecting or impairing the hippocampus, respectively, thus affecting neurothrophic factor expression such as BDNF mRNA. In this context, chronic consumption of trans fats over two generations can facilitate the development of mania-like behavior, so leading to memory impairment and emotionality, which are related to neuropsychiatric conditions.


Asunto(s)
Trastorno Bipolar/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Efectos Tardíos de la Exposición Prenatal , ARN Mensajero/metabolismo , Ácidos Grasos trans/toxicidad , Animales , Trastorno Bipolar/psicología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Aceites de Pescado/toxicidad , Lactancia , Masculino , Trastornos de la Memoria/metabolismo , Embarazo , Ratas Wistar , Reconocimiento en Psicología/fisiología , Aceite de Soja/toxicidad , Productos Vegetales/toxicidad
4.
EXCLI J ; 13: 1239-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26417337

RESUMEN

Embryonic animals are especially susceptible to metal exposure. Manganese (Mn) is an essential element, but in excess it can induce toxicity. In this study we used Drosophila melanogaster as an embryonic model to investigate biochemical and behavioral alterations due to Mn exposure. Flies were treated with standard medium supplemented with MnCl2 at 0.1 mM, 0.5 mM or 1 mM from the egg to the adult stage. At 0.5 mM and 1 mM Mn, newly ecloded flies showed significantly enhanced locomotor activity when assessed by negative geotaxis behavior. In addition, a significant increase in Mn levels (p < 0.0001) was observed, while Ca, Fe, Cu, Zn and S levels were significantly decreased. A significant drop in cell viability occurred in flies exposed to 1 mM Mn. There was also an induction of reactive oxygen species at 0.5 mM and 1 mM Mn (p < 0.05). At 1 mM, Mn increased Catalase (p < 0.005), Superoxide Dismutase (p < 0.005) and Hsp83 (p < 0.0001) mRNA expression, without altering Catalase or Superoxide Dismutase activity; the activity of Thioredoxin reductase and Glutatione-S-transferase enzymes was increased. Mn treatment did not alter ERK or JNK1/2 phosphorylation, but at 1 mM caused an inhibition of p38(MAPK) phosphorylation. Together these data suggest mechanisms of adaptation in the fly response to Mn exposure in embryonic life.

5.
Neurotoxicology ; 37: 118-26, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23639798

RESUMEN

In this study, we investigated the potential protective effects of Valeriana officinalis (V. officinalis) against the toxicity induced by rotenone in Drosophila melanogaster (D. melanogaster). Adult wild-type flies were concomitantly exposed to rotenone (500 µM) and V. officinalis aqueous extract (10mg/mL) in the food during 7 days. Rotenone-fed flies had a worse performance in the negative geotaxis assay (i.e. climbing capability) and open-field test (i.e. mobility time) as well as a higher incidence of mortality when compared to control group. V. officinalis treatment offered protection against these detrimental effects of rotenone. In contrast, the decreased number of crossings observed in the flies exposed to rotenone was not modified by V. officinalis. Rotenone toxicity was also associated with a marked decrease on the total-thiol content in the homogenates and cell viability of flies, which were reduced by V. officinalis treatment. Indeed, rotenone exposure caused a significant increase in the mRNA expression of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and also in the tyrosine hydroxylase (TH) gene. The expression of SOD and CAT mRNAs was normalized by V. officinalis treatment. Our results suggest that V. officinalis extract was effective in reducing the toxicity induced by rotenone in D. melanogaster as well as confirm the utility of this model to investigate potential therapeutic strategies on movement disorders, including Parkinson disease (PD).


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Extractos Vegetales/farmacología , Rotenona/toxicidad , Valeriana , Animales , Catalasa/genética , Catalasa/metabolismo , Citoprotección , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas , Plantas Medicinales , ARN Mensajero/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Tiempo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Regulación hacia Arriba , Valeriana/química
6.
Genet. mol. biol ; 31(1): 128-135, 2008. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-476162

RESUMEN

Selenium is an important dietary micronutrient and an essential component of selenoproteins and the active sites of some enzymes, although at high concentrations it is toxic. We investigated diphenyl diselenide ((C6H5)2Se2 ) for its effects on the developmental stages of Drosophila melanogaster and found that in the larval and pupae stages the toxic threshold for this compound when added to the banana-agar medium on which the larva were fed was 350 µmol. In adult flies, fed on the same media, there were no observable toxic effects below 500 µmol but there were toxic effects above 600 µmol, indicating that adult flies were more resistant to selenium intoxication. In larvae, a when diphenyl diselenide was present above the toxic threshold there was increased activation of the hsp83 heat shock protein gene. Selenium promotes oxidation of sulfhydryl groups and affects the folding of proteins and this could explain the over-expression of hsp83 because the product of this gene is involved in protein folding and defense responses, including the response to heat shock.


Asunto(s)
Animales , Drosophila melanogaster/genética , Proteínas de Choque Térmico , Selenio/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA