Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 188(1): 282-296, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30430345

RESUMEN

This study evaluates a correlation between family history, micronutrients intake, and alternative therapies with genetic instability, before and during breast cancer treatment. For this study, a total of 150 women were selected. Among those, 50 women were breast cancer patients on chemotherapy, while 50 breast cancer patients were on radiotherapy, and 50 were healthy females. All the participants signed the informed consent form and answered the public health questionnaire. Samples of buccal epithelial and peripheral blood cells were collected and analyzed through micronucleus and comet assays. The cells were evaluated for apoptosis and DNA damage. Results showed the association of patients' family history with an increase in toxicogenetic damage before and during cancer therapy. On the other hand, patients with late-onset cancer also presented genetic instability before and during therapy, along with those who did not take sufficient vegetables and alternative therapies. A positive correlation was observed between the genetic instability and alternative therapies, while inverse correlation was recorded with the vegetable consumption. Results clearly explain that the nutritional aspects and alternative therapies influence the genetic instability before and during cancer therapies especially in radiotherapy treated patients. Our data could be used for the monitoring therapies and management of breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Terapias Complementarias , Dieta , Inestabilidad Genómica , Anamnesis , Estudios de Casos y Controles , Ensayo Cometa , Femenino , Frutas , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Verduras
2.
IUBMB Life ; 70(5): 420-431, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29573147

RESUMEN

Antianxiety drugs currently in use are associated with a number of serious side effects. Present study was designed to evaluate the efficacy of anacardic acids (AAs) isolated from cashew nut (Anacardium occidentale L.) shell liquid (CNSL) to treat anxiety as well as its role in oxidative stress in mice model. Anxiolytic effect of AA was evaluated using rota-rod and a set of behavioral tests in male Swiss albino mice at the doses of 10, 25, and 50 mg/kg. Flumazenil was used to evaluate the possible involvement of GABAergic system in the mechanism of action of AA. The effect of AA on oxidative stress in mice was evaluated by determining the concentration of malondialdehyde (MDA), reduced glutathione, and catalase (CAT) activity. The detection of DNA damage of the treated animals was performed using alkaline comet test in the hippocampus and frontal cortex of the animals. The results demonstrated that AA did not produce myorelaxant and sedative effects, nor did it cause a decrease in locomotor activity. The anxiolytic effect of AA was well-evident in all tests, especially at higher dose levels (25 and 50 mg/mg). Flumazenil reversed the anxiolytic effect of AA at all doses. In addition, AA reduced oxidative stress by decreasing the concentration of MDA and increasing the levels of reduced glutathione (GSH) and CAT activity. Statistical analysis by Pearson's correlation indicated a positive correlation between anxiolytic effect of AA to its antioxidant and lipid peroxidation inhibitory activity. Furthermore, increased CAT activity and GSH concentrations in the hippocampus and frontal cortex of mice was also complementary to the reduced genotoxic damage observed in the study. In comet assay, AA did not increase in DNA damage. In conclusion, the results supported that AA possesses GABAA receptor mediated anxiolytic activity with the lack of myorelaxation and genotoxicity. © 2018 IUBMB Life, 70(5):420-431, 2018.


Asunto(s)
Ácidos Anacárdicos/farmacología , Anacardium/química , Ansiolíticos/farmacología , Antioxidantes/farmacología , Ansiedad/tratamiento farmacológico , Ácidos Anacárdicos/química , Ácidos Anacárdicos/aislamiento & purificación , Animales , Ansiolíticos/química , Ansiolíticos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Ansiedad/metabolismo , Ansiedad/fisiopatología , Catalasa/metabolismo , Diazepam/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos ICR , Nueces/química , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Prueba de Desempeño de Rotación con Aceleración Constante
3.
Chemosphere ; 177: 93-101, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28284120

RESUMEN

Phytol (PYT) is a diterpenoid having important biological activity. However, it is a water non-soluble compound. This study aims to prepare PYT nanoemulsion (PNE) and evaluation of toxic, cytotoxic and genotoxic activities of PYT and PNE. For this, the PNE was prepared by the phase inversion method. The cytotoxicity test was performed in Artemia salina, while toxicity, cytotoxicity and genotoxicity in Allium cepa at concentrations of 2, 4, 8 and 16 mM. Potassium dichromate and copper sulfate were used as positive controls for the tests of A. salina and A. cepa, respectively. In addition, an adaptation response was detected in A. cepa by using the comet assay. The results suggest that both PYT and PNE exhibited toxic and cytotoxic effects at 4-16 mM in either test system, while genotoxicity at 2-16 mM in A. cepa. PNE exhibited more toxic, cytotoxic and genotoxic effects at 8 and 16 mM than the PYT. However, both PYT and PNE at 2 and 4 mM decreased the index and frequency of damage in A. cepa after 48 and 72 h, suggesting a possible adaptation response or DNA damage preventing capacity. Nanoemulsified PYT (PNE) may readily cross the biological membranes with an increase in bioavailability and produce more toxic, cytotoxic and genotoxic effects in the used test systems.


Asunto(s)
Artemia/crecimiento & desarrollo , Daño del ADN/efectos de los fármacos , Nanopartículas/toxicidad , Cebollas/citología , Fitol/toxicidad , Animales , Artemia/efectos de los fármacos , Ensayo Cometa , Emulsiones/química , Emulsiones/toxicidad , Nanopartículas/química , Cebollas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA