Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Pollut ; 318: 120851, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509352

RESUMEN

The nephrotoxicity of low-chronic metal exposures is unclear, especially considering several metals simultaneously. We assessed the individual and joint association of metals with longitudinal change in renal endpoints in Aragon Workers Health Study participants with available measures of essential (cobalt [Co], copper [Cu], molybdenum [Mo] and zinc [Zn]) and non-essential (As, barium [Ba], Cd, chromium [Cr], antimony [Sb], titanium [Ti], uranium [U], vanadium [V] and tungsten [W]) urine metals and albumin-to-creatinine ratio (ACR) (N = 707) and estimated glomerular filtration rate (eGFR) (N = 1493) change. Median levels were 0.24, 7.0, 18.6, 295, 3.1, 1.9, 0.28, 1.16, 9.7, 0.66, 0.22 µg/g for Co, Cu, Mo, Zn, As, Ba, Cd, Cr, Sb, Ti, V and W, respectively, and 52.5 and 27.2 ng/g for Sb and U, respectively. In single metal analysis, higher As, Cr and W concentrations were associated with increasing ACR annual change. Higher Zn, As and Cr concentrations were associated with decreasing eGFR annual change. The shape of the longitudinal dose-responses, however, was compatible with a nephrotoxic role for all metals, both in ACR and eGFR models. In joint metal analysis, both higher mixtures of Cu-Zn-As-Ba-Ti-U-V-W and Co-Cd-Cr-Sb-V-W showed associations with increasing ACR and decreasing eGFR annual change. As and Cr were main drivers of the ACR change joint metal association. For the eGFR change joint metal association, while Zn and Cr were main drivers, other metals also contributed substantially. We identified potential interactions for As, Zn and W by other metals with ACR change, but not with eGFR change. Our findings support that Zn, As, Cr and W and suggestively other metals, are nephrotoxic at relatively low exposure levels. Metal exposure reduction and mitigation interventions may improve prevention and decrease the burden of renal disease in the population.


Asunto(s)
Cadmio , Uranio , Persona de Mediana Edad , Adulto , Humanos , Albuminuria , España/epidemiología , Cromo , Zinc , Cobalto , Molibdeno , Titanio , Bario
2.
Free Radic Biol Med ; 194: 52-61, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370960

RESUMEN

BACKGROUND: The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants. MATERIAL AND METHODS: In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay. RESULTS: The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk. CONCLUSIONS: Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.


Asunto(s)
Arsénico , Fracturas Óseas , Selenio , Humanos , Cadmio , Antimonio , Densidad Ósea/genética , Oxidación-Reducción
3.
Redox Biol ; 52: 102314, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460952

RESUMEN

BACKGROUND: Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. METHODS: Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. RESULTS: In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. CONCLUSIONS: Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals.


Asunto(s)
Arsénico , Metales Pesados , Selenio , Aminoácidos Esenciales , Arsénico/orina , Cadmio , Interacción Gen-Ambiente , Humanos , Metales , Metales Pesados/orina , Oxidación-Reducción , España
4.
Free Radic Biol Med ; 162: 392-400, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137469

RESUMEN

BACKGROUND AND OBJECTIVES: Experimental data suggest that trace elements, such as arsenic (As), cadmium (Cd), and selenium (Se) can influence the bone remodeling process. We evaluated the cross-sectional association between As, Cd, and Se biomarkers with bone mineral density (BMD) measured at the calcaneus, in a representative sample of a general population from Spain. As secondary analyses we evaluated the associations of interest in subgroups defined by well-established BMD determinants, and also conducted prospective analysis of osteoporosis-related incident bone fractures restricted to participants older than 50 years-old. METHODS: In N = 1365 Hortega Study participants >20 years-old, urine As and Cd were measured by inductively coupled-plasma mass spectrometry (ICPMS); plasma Se was measured by atomic absorption spectrometry (AAS) with graphite furnace; and BMD at the calcaneus was measured using the Peripheral Instaneuous X-ray Imaging system (PIXI). As levels were corrected for arsenobetaine (Asb) to account for inorganic As exposure. RESULTS: The median of total urine As, Asb-corrected urine As, urine Cd, and plasma Se was 61.3, 6.53 and 0.39 µg/g creatinine, and 84.9 µg/L, respectively. In cross-sectional analysis, urine As and Cd were not associated with reduced BMD (T-score < -1 SD). We observed a non-linear dose-response of Se and reduced BMD, showing an inverse association below ~105 µg/L, which became increasingly positive above ~105 µg/L. The evaluated subgroups did not show differential associations. In prospective analysis, while we also observed a U-shape dose-response of Se with the incidence of osteoporosis-related bone fractures, the positive association above ~105 µg/L was markedly stronger, compared to the cross-sectional analysis. CONCLUSIONS: Our results support that Se, but not As and Cd, was associated to BMD-related disease. The association of Se and BMD-related disease was non-linear, including a strong positive association with osteoporosis-related bone fractures risk at the higher Se exposure range. Considering the substantial burden of bone loss in elderly populations, additional large prospective studies are needed to confirm the relevance of our findings to bone loss prevention in the population depending on Se exposure levels.


Asunto(s)
Arsénico , Selenio , Adulto , Anciano , Arsénico/toxicidad , Densidad Ósea , Cadmio/toxicidad , Estudios Transversales , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA