Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166781, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286142

RESUMEN

Traumatic brain injury (TBI) is major neurological burden globally, and effective treatments are urgently needed. TBI is characterized by a reduction in energy metabolism and synaptic function that seems a primary cause of neuronal dysfunction. R13, a small drug and BDNF mimetic showed promising results in improving spatial memory and anxiety-like behavior after TBI. Additionally, R13 was found to counteract reductions in molecules associated with BDNF signaling (p-TrkB, p-PI3K, p-AKT), synaptic plasticity (GluR2, PSD95, Synapsin I) as well as bioenergetic components such as mitophagy (SOD, PGC-1α, PINK1, Parkin, BNIP3, and LC3) and real-time mitochondrial respiratory capacity. Behavioral and molecular changes were accompanied by adaptations in functional connectivity assessed using MRI. Results highlight the potential of R13 as a therapeutic agent for TBI and provide valuable insights into the molecular and functional changes associated with this condition.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Factor Neurotrófico Derivado del Encéfalo , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Transducción de Señal , Mitocondrias/metabolismo , Metabolismo Energético
2.
Mol Nutr Food Res ; 63(15): e1801055, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31115168

RESUMEN

SCOPE: Traumatic brain injury (TBI) compromises neuronal function required for hippocampal synaptic plasticity and cognitive function. Despite the high consumption of blueberries, information about its effects on brain plasticity and function under conditions of brain trauma is limited. The efficacy of dietary blueberry (BB) supplementation to mitigate the effects of TBI on plasticity markers and associated behavioral function in a rodent model of concussive injury are assessed. METHODS AND RESULTS: Rats were maintained on a diet supplemented with blueberry (BB, 5% w/w) for 2 weeks after TBI. It is found that BB supplementation mitigated a loss of spatial learning and memory performance after TBI, and reduced the effects of TBI on anxiety-like behavior. BB supplementation prevents a reduction of molecules associated with the brain-derived neurotrophic factor (BDNF) system action on learning and memory such as cyclic-AMP response element binding factor (CREB), calcium/calmodulin-dependent protein kinase II (CaMKII). In addition, BB supplementation reverses an increase of the lipid peroxidation byproduct 4-hydroxy-nonenal (4-HNE) after TBI. Importantly, synaptic and neuronal signaling regulators change in proportion with the memory performance, suggesting an association between plasticity markers and behavior. CONCLUSION: Data herein indicate that BB supplementation has a beneficial effect in mitigating the acute aspects of the TBI pathology.


Asunto(s)
Arándanos Azules (Planta) , Lesiones Traumáticas del Encéfalo/dietoterapia , Encéfalo/efectos de los fármacos , Animales , Conducta Animal , Biomarcadores/metabolismo , Peso Corporal , Encéfalo/fisiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Suplementos Dietéticos , Ingestión de Alimentos , Aprendizaje , Masculino , Memoria , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas Sprague-Dawley
3.
Mol Nutr Food Res ; 63(15): e1801054, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31087499

RESUMEN

SCOPE: The action of brain disorders on peripheral metabolism is poorly understood. The impact of traumatic brain injury (TBI) on peripheral organ function and how TBI effects can be influenced by the metabolic perturbation elicited by fructose ingestion are studied. METHODS AND RESULTS: It is found that TBI affects glucose metabolism and signaling proteins for insulin and growth hormone in the liver; these effects are exacerbated by fructose ingestion. Fructose, principally metabolized in the liver, potentiates the action of TBI on hepatic lipid droplet accumulation. Studies in isolated cultured hepatocytes identify GH and fructose as factors for the synthesis of lipids. The liver has a major role in the synthesis of lipids used for brain function and repair. TBI results in differentially expressed genes in the hypothalamus, primarily associated with lipid metabolism, providing cues to understand central control of peripheral alterations. Fructose-fed TBI animals have elevated levels of markers of inflammation, lipid peroxidation, and cell energy metabolism, suggesting the pro-inflammatory impact of TBI and fructose in the liver. CONCLUSION: Results reveal the impact of TBI on systemic metabolism and the aggravating action of fructose. The hypothalamic-pituitary-growth axis seems to play a major role in the regulation of the peripheral TBI pathology.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Fructosa/efectos adversos , Metabolismo de los Lípidos , Hígado/metabolismo , Animales , Peso Corporal , Lesiones Traumáticas del Encéfalo/metabolismo , Células Cultivadas , Ingestión de Alimentos , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Hepatitis/etiología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones , Estrés Oxidativo , Ratas Sprague-Dawley
4.
PLoS One ; 12(4): e0175090, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28380057

RESUMEN

Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA), could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2)-enriched indirect pathway but not of genes found in dopamine receptor 1(D1)-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and cellular effects of morphine that can be reduced or reversed by dietary n-3 PUFAs.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Morfina/farmacología , Animales , Ansiedad/inducido químicamente , Cuerpo Estriado/química , Esquema de Medicación , Femenino , Lóbulo Frontal/química , Lípidos/análisis , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Morfina/administración & dosificación , Morfina/antagonistas & inhibidores , Actividad Motora/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Glutamato/análisis
5.
EBioMedicine ; 7: 157-66, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27322469

RESUMEN

Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.


Asunto(s)
Trastornos del Conocimiento/genética , Fructosa/administración & dosificación , Redes Reguladoras de Genes , Enfermedades Metabólicas/genética , Nutrigenómica/métodos , Animales , Biglicano/genética , Biglicano/metabolismo , Epigenómica/métodos , Fibromodulina/genética , Fibromodulina/metabolismo , Perfilación de la Expresión Génica/métodos , Hipocampo/química , Humanos , Hipotálamo/química , Masculino , Redes y Vías Metabólicas , Modelos Animales , Medicina de Precisión , Ratas , Biología de Sistemas/métodos
6.
Biochim Biophys Acta ; 1852(5): 951-61, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25550171

RESUMEN

Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18:3 n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissues. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders.


Asunto(s)
Trastornos de Ansiedad/prevención & control , Encéfalo/efectos de los fármacos , Curcumina/farmacología , Ácidos Docosahexaenoicos/metabolismo , Acetiltransferasas/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Trastornos de Ansiedad/metabolismo , Trastornos de Ansiedad/fisiopatología , Encéfalo/metabolismo , Curcumina/administración & dosificación , Suplementos Dietéticos , Sinergismo Farmacológico , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos , Células Hep G2 , Humanos , Immunoblotting , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas Sprague-Dawley , Ácido alfa-Linolénico/administración & dosificación , Ácido alfa-Linolénico/farmacología
7.
Neurobiol Dis ; 73: 307-18, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25283985

RESUMEN

Quality nutrition during the period of brain formation is a predictor of brain functional capacity and plasticity during adulthood; however it is not clear how this conferred plasticity imparts long-term neural resilience. Here we report that early exposure to dietary omega-3 fatty acids orchestrates key interactions between metabolic signals and Bdnf methylation creating a reservoir of neuroplasticity that can protect the brain against the deleterious effects of switching to a Western diet (WD). We observed that the switch to a WD increased Bdnf methylation specific to exon IV, in proportion to anxiety-like behavior, in Sprague Dawley rats reared in low omega-3 fatty acid diet, and these effects were abolished by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine. Blocking methylation also counteracted the reducing action of WD on the transcription regulator CTCF binding to Bdnf promoter IV. In vitro studies confirmed that CTCF binding to Bdnf promoter IV is essential for the action of DHA on BDNF regulation. Diet is also intrinsically associated to cell metabolism, and here we show that the switch to WD downregulated cell metabolism (NAD/NADH ratio and SIRT1). The fact that DNA methyltransferase inhibitor did not alter these parameters suggests they occur upstream to methylation. In turn, the methylation inhibitor counteracted the action of WD on PGC-1α, a mitochondrial transcription co-activator and BDNF regulator, suggesting that PGC-1α is an effector of Bdnf methylation. Results support a model in which diet can build an "epigenetic memory" during brain formation that confers resilience to metabolic perturbations occurring in adulthood.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Ácidos Grasos Omega-3/metabolismo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Animales , Ansiedad/dietoterapia , Azacitidina/análogos & derivados , Azacitidina/farmacología , Azacitidina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/genética , Línea Celular Tumoral , Decitabina , Dieta con Restricción de Grasas/efectos adversos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Metilación/efectos de los fármacos , Ratones , Neuroblastoma/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo
8.
Exp Neurol ; 253: 41-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24361060

RESUMEN

We assessed whether the protective action of progesterone on traumatic brain injury (TBI) could be influenced by the consumption of omega-3 fatty acids during early life. Pregnant Sprague-Dawley rats were fed on omega-3 adequate or deficient diet from 3rd day of pregnancy and their female offspring were kept on the same diets up to the age of 15 weeks. Ovariectomy was performed at the age of 12 weeks to deprive animals from endogenous steroids until the time of a fluid percussion injury (FPI). Dietary n-3 fatty acid deficiency increased anxiety in sham animals and TBI aggravated the effects of the deficiency. Progesterone replacement counteracted the effects of TBI on the animals reared under n-3 deficiency. A similar pattern was observed for markers of membrane homeostasis such as 4-Hydroxynonenal (HNE) and secreted phospholipases A2 (sPLA2), synaptic plasticity such as brain derived neurotrophic factor (BDNF), syntaxin (STX)-3 and growth associated protein (GAP)-43, and for growth inhibitory molecules such as myelin-associated glycoprotein (MAG) and Nogo-A. Results that progesterone had no effects on sham n-3 deficient animals suggest that the availability of progesterone is essential under injury conditions. Progesterone treatment counteracted several parameters related to synaptic plasticity and membrane stability reduced by FPI and n-3 deficiency suggest potential targets for therapeutic applications. These results reveal the importance of n-3 preconditioning during early life and the efficacy of progesterone therapy during adulthood to counteract weaknesses in neuronal and behavioral plasticity.


Asunto(s)
Lesiones Encefálicas/prevención & control , Grasas de la Dieta/farmacología , Ácidos Grasos Omega-3/farmacología , Progesterona/uso terapéutico , Progestinas/uso terapéutico , Animales , Animales Recién Nacidos , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/etiología , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Femenino , Proteína GAP-43/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas de la Mielina/toxicidad , Glicoproteína Asociada a Mielina/toxicidad , Neuropéptido Y/metabolismo , Proteínas Nogo , Ovariectomía , Embarazo , Efectos Tardíos de la Exposición Prenatal , Proteínas Qa-SNARE/metabolismo , Ratas , Ratas Sprague-Dawley , Factores Sexuales
9.
Biochim Biophys Acta ; 1842(4): 535-46, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24345766

RESUMEN

Metabolic dysfunction occurring after traumatic brain injury (TBI) is an important risk factor for the development of psychiatric illness. In the present study, we utilized an omega-3 diet during early life as a metabolic preconditioning to alter the course of TBI during adulthood. TBI animals under omega-3 deficiency were more prone to alterations in energy homeostasis (adenosine monophosphate-activated protein kinase; AMPK phosphorylation and cytochrome C oxidase II; COII levels) and mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PGC-1α and mitochondrial transcription factor A; TFAM). A similar response was found for brain-derived neurotrophic factor (BDNF) and its signaling through tropomyosin receptor kinase B (TrkB). The results from in vitro studies showed that 7,8-dihydroxyflavone (7,8-DHF), a TrkB receptor agonist, upregulates the levels of biogenesis activator PGC-1α, and CREB phosphorylation in neuroblastoma cells suggesting that BDNF-TrkB signaling is pivotal for engaging signals related to synaptic plasticity and energy metabolism. The treatment with 7,8-DHF elevated the mitochondrial respiratory capacity, which emphasizes the role of BDNF-TrkB signaling as mitochondrial bioenergetics stimulator. Omega-3 deficiency worsened the effects of TBI on anxiety-like behavior and potentiated a reduction of anxiolytic neuropeptide Y1 receptor (NPY1R). These results highlight the action of metabolic preconditioning for building long-term neuronal resilience against TBI incurred during adulthood. Overall, the results emphasize the interactive action of metabolic and plasticity signals for supporting neurological health.


Asunto(s)
Lesiones Encefálicas/metabolismo , Metabolismo Energético , Homeostasis , Plasticidad Neuronal , Animales , Ansiedad/etiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Mitocondrias/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas , Ratas Sprague-Dawley , Receptor trkB/fisiología , Transducción de Señal , Factores de Transcripción/análisis
10.
Neurorehabil Neural Repair ; 28(1): 75-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23911971

RESUMEN

BACKGROUND: Damage to the plasma membrane is a prevalent but often neglected aspect of traumatic brain injury (TBI), which can impair neuronal signaling and hamper neurological recovery. OBJECTIVE: This study was performed to assess a new noninvasive intervention to counteract peroxidative damage to the phospholipids in the membrane using the powerful action of foods. Although dietary docosahexaenoic acid (C22:6n-3; DHA) provides protection against TBI, the pervasive effects of TBI that cause phospholipid damage, including to DHA, raises concerns about how to preserve DHA in the brain for optimal functional recovery. METHODS: Rats were maintained on curcumin and/or DHA-enriched diets for 2 weeks postinjury, and their brains were subjected to analyses. RESULTS: Fluid percussion injury reduced DHA levels as well as levels of enzymes involved in the metabolism of DHA such as FADS2 and 17ß-HSD4 and elevated levels of markers of lipid peroxidation such as 4-hydroxy-2-nonenal (4-HNE) and 4-hydroxy-2-hexenal (4-HHE). These effects were counteracted by DHA or curcumin, whereas the combination of curcumin and DHA had an enhanced effect on DHA and 4-HNE. The combination of curcumin and DHA was also efficient in counteracting reductions in the plasticity markers, brain-derived neurotrophic factor and its receptor p-trkB, and learning ability, which had been lessened after TBI. CONCLUSIONS: Curcumin complements the action of DHA on TBI pathology, and this property appears to be a viable strategy to counteract neuronal dysfunction after TBI and complement the application of rehabilitative interventions to foster functional recovery.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Membrana Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Curcumina/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiología , Cognición/fisiología , Curcumina/farmacología , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/fisiología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos
11.
Curr Opin Clin Nutr Metab Care ; 16(6): 726-33, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24071781

RESUMEN

PURPOSE OF STUDY: To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. RECENT FINDINGS: Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long-term neuronal plasticity. SUMMARY: The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid docosahexenoic acid, disrupting neuronal signaling. Thus, dietary docosahexenoic acid seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation.


Asunto(s)
Cognición/fisiología , Dieta , Plasticidad Neuronal/fisiología , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Epigenómica , Ácidos Grasos Omega-3/administración & dosificación , Humanos , Actividad Motora , Neuronas/citología , Estrés Oxidativo , Polifenoles/administración & dosificación
12.
PLoS One ; 8(3): e57945, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23483949

RESUMEN

Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1ß levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.


Asunto(s)
Ansiedad/etiología , Lesiones Encefálicas/complicaciones , Dieta/efectos adversos , Trastornos por Estrés Postraumático/etiología , Envejecimiento/patología , Animales , Ansiedad/patología , Ansiedad/fisiopatología , Biomarcadores/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Citocinas/metabolismo , Ácidos Grasos/metabolismo , Femenino , Plasticidad Neuronal , Fenotipo , Ratas , Ratas Sprague-Dawley , Receptores de Neuropéptido Y/metabolismo , Trastornos por Estrés Postraumático/patología , Trastornos por Estrés Postraumático/fisiopatología
13.
PLoS One ; 7(7): e41288, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911773

RESUMEN

Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.e., BDNF, CREB, CaMKII, and syntaxin 3. Concurrent exposure to exercise was complementary to the dietary treatment effects on spinal learning. The diet containing DHA/Cur resulted in higher levels of DHA and lower levels of omega-6 fatty acid arachidonic acid (AA) in the spinal cord than the diet deficient in DHA/Cur. The level of spinal learning was inversely related to the ratio of AA:DHA. These results emphasize the capacity of select dietary factors and exercise to foster spinal cord learning. Given the non-invasiveness and safety of the modulation of diet and exercise, these interventions should be considered in light of their potential to enhance relearning of sensorimotor tasks during rehabilitative training paradigms after a spinal cord injury.


Asunto(s)
Dieta , Aprendizaje , Condicionamiento Físico Animal , Desempeño Psicomotor , Traumatismos de la Médula Espinal/rehabilitación , Animales , Ácido Araquidónico/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Curcumina/administración & dosificación , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Grasos/metabolismo , Masculino , Ratones , Desempeño Psicomotor/efectos de los fármacos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/dietoterapia , Traumatismos de la Médula Espinal/metabolismo
14.
J Neurosurg Spine ; 17(2): 134-40, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22735048

RESUMEN

OBJECT: The pathogenesis of cervical spondylotic myelopathy (CSM) is related to both primary mechanical and secondary biological injury. The authors of this study explored a novel, noninvasive method of promoting neuroprotection in myelopathy by using curcumin to minimize oxidative cellular injury and the capacity of omega-3 fatty acids to support membrane structure and improve neurotransmission. METHODS: An animal model of CSM was created using a nonresorbable expandable polymer placed in the thoracic epidural space, which induced delayed myelopathy. Animals that underwent placement of the expandable polymer were exposed to either a diet rich in docosahexaenoic acid and curcumin (DHA-Cur) or a standard Western diet (WD). Twenty-seven animals underwent serial gait testing, and spinal cord molecular assessments were performed after the 6-week study period. RESULTS: At the conclusion of the study period, gait analysis revealed significantly worse function in the WD group than in the DHA-Cur group. Levels of brain-derived neurotrophic factor (BDNF), syntaxin-3, and 4-hydroxynonenal (4-HNE) were measured in the thoracic region affected by compression and lumbar enlargement. Results showed that BDNF levels in the DHA-Cur group were not significantly different from those in the intact animals but were significantly greater than in the WD group. Significantly higher lumbar enlargement syntaxin-3 in the DHA-Cur animals combined with a reduction in lipid peroxidation (4-HNE) indicated a possible healing effect on the plasma membrane. CONCLUSIONS: Data in this study demonstrated that DHA-Cur can promote spinal cord neuroprotection and neutralize the clinical and biochemical effects of myelopathy.


Asunto(s)
Curcuma/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Aldehídos/sangre , Animales , Factor Neurotrófico Derivado del Encéfalo/sangre , Enfermedad Crónica , Curcuma/efectos de los fármacos , Dieta/métodos , Ácidos Docosahexaenoicos/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Proteínas Qa-SNARE/sangre , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/etiología
15.
Sci Rep ; 2: 431, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666534

RESUMEN

To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats.


Asunto(s)
Ansiedad/fisiopatología , Encéfalo/fisiología , Ácidos Docosahexaenoicos/metabolismo , Plasticidad Neuronal/fisiología , Animales , Ansiedad/inducido químicamente , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/administración & dosificación , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Proteína GAP-43/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuropéptido Y/metabolismo , Embarazo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo
16.
J Physiol ; 590(10): 2485-99, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22473784

RESUMEN

We pursued studies to determine the effects of the metabolic syndrome (MetS) on brain, and the possibility of modulating these effects by dietary interventions. In addition, we have assessed potential mechanisms by which brain metabolic disorders can impact synaptic plasticity and cognition. We report that high-dietary fructose consumption leads to an increase in insulin resistance index, and insulin and triglyceride levels, which characterize MetS. Rats fed on an n-3 deficient diet showed memory deficits in a Barnes maze, which were further exacerbated by fructose intake. In turn, an n-3 deficient diet and fructose interventions disrupted insulin receptor signalling in hippocampus as evidenced by a decrease in phosphorylation of the insulin receptor and its downstream effector Akt. We found that high fructose consumption with an n-3 deficient diet disrupts membrane homeostasis as evidenced by an increase in the ratio of n-6/n-3 fatty acids and levels of 4-hydroxynonenal, a marker of lipid peroxidation. Disturbances in brain energy metabolism due to n-3 deficiency and fructose treatments were evidenced by a significant decrease in AMPK phosphorylation and its upstream modulator LKB1 as well as a decrease in Sir2 levels. The decrease in phosphorylation of CREB, synapsin I and synaptophysin levels by n-3 deficiency and fructose shows the impact of metabolic dysfunction on synaptic plasticity. All parameters of metabolic dysfunction related to the fructose treatment were ameliorated by the presence of dietary n-3 fatty acid. Results showed that dietary n-3 fatty acid deficiency elevates the vulnerability to metabolic dysfunction and impaired cognitive functions by modulating insulin receptor signalling and synaptic plasticity.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Síndrome Metabólico/fisiopatología , Receptor de Insulina/fisiología , Animales , Encéfalo/fisiología , Cognición/fisiología , Dieta , Modelos Animales de Enfermedad , Fructosa/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Sprague-Dawley
17.
Brain Stimul ; 5(4): 642-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22441161

RESUMEN

BACKGROUND: Energy metabolism is emerging as a driving force for cellular events underlying cognitive processing. The hypothalamus integrates metabolic signals with the function of centers related to cognitive processing such as the hippocampus. OBJECTIVE/HYPOTHESIS: Hypothalamic activity can influence molecular systems important for processing synaptic plasticity underlying cognition in the hippocampus. The neurotrophin BDNF may act as a mediator for the effects of energy metabolism on synaptic plasticity and cognitive function. METHODS: The hypothalamus of rats confined to a respiratory chamber was electrically stimulated, and energy expenditure (EE) was assessed via indirect calorimetry. MRNA levels for BDNF and molecules related to synaptic plasticity and control of cellular energy metabolism were assessed in the hippocampus. RESULTS: Electrical stimulation of the rat hypothalamus elevates mRNA levels of hippocampal BDNF. BDNF mRNA levels increased according to the metabolic rate of the animals, and in proportion to the mRNA of molecules involved in control of cellular energy metabolism such as ubiquitous mitochondrial creatine kinase (uMtCK). CONCLUSIONS: Results show a potential mechanism by which cellular energy metabolism impacts the substrates of cognitive processing, and may provide molecular basis for therapeutic treatments based on stimulation of deep brain structures.


Asunto(s)
Metabolismo Basal/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Hipotálamo/fisiología , Plasticidad Neuronal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Calorimetría Indirecta , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo
18.
PLoS One ; 7(12): e52998, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300842

RESUMEN

Although traumatic brain injury (TBI) is often associated with gait deficits, the effects of TBI on spinal cord centers are poorly understood. We seek to determine the influence of TBI on the spinal cord and the potential of dietary omega-3 (n-3) fatty acids to counteract these effects. Male rodents exposed to diets containing adequate or deficient levels of n-3 since gestation received a moderate fluid percussion injury when becoming 14 weeks old. TBI reduced levels of molecular systems important for synaptic plasticity (BDNF, TrkB, and CREB) and plasma membrane homeostasis (4-HNE, iPLA2, syntaxin-3) in the lumbar spinal cord. These effects of TBI were more dramatic in the animals exposed to the n-3 deficient diet. Results emphasize the comprehensive action of TBI across the neuroaxis, and the critical role of dietary n-3 as a means to build resistance against the effects of TBI.


Asunto(s)
Lesiones Encefálicas/complicaciones , Grasas de la Dieta/farmacología , Ácidos Grasos Omega-3/farmacología , Lípidos/deficiencia , Médula Espinal/metabolismo , Animales , Lesiones Encefálicas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Grasas de la Dieta/metabolismo , Ácidos Grasos Omega-3/metabolismo , Femenino , Homeostasis/efectos de los fármacos , Vértebras Lumbares , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo
19.
PLoS One ; 6(12): e28451, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163304

RESUMEN

Omega-3-fatty acid DHA is a structural component of brain plasma membranes, thereby crucial for neuronal signaling; however, the brain is inefficient at synthesizing DHA. We have asked how levels of dietary n-3 fatty acids during brain growth would affect brain function and plasticity during adult life. Pregnant rats and their male offspring were fed an n-3 adequate diet or n-3 deficient diets for 15 weeks. Results showed that the n-3 deficiency increased parameters of anxiety-like behavior using open field and elevated plus maze tests in the male offspring. Behavioral changes were accompanied by a level reduction in the anxiolytic-related neuropeptide Y-1 receptor, and an increase in the anxiogenic-related glucocorticoid receptor in the cognitive related frontal cortex, hypothalamus and hippocampus. The n-3 deficiency reduced brain levels of docosahexaenoic acid (DHA) and increased the ratio n-6/n-3 assessed by gas chromatography. The n-3 deficiency reduced the levels of BDNF and signaling through the BDNF receptor TrkB, in proportion to brain DHA levels, and reduced the activation of the BDNF-related signaling molecule CREB in selected brain regions. The n-3 deficiency also disrupted the insulin signaling pathways as evidenced by changes in insulin receptor (IR) and insulin receptor substrate (IRS). DHA deficiency during brain maturation reduces plasticity and compromises brain function in adulthood. Adequate levels of dietary DHA seem crucial for building long-term neuronal resilience for optimal brain performance and aiding in the battle against neurological disorders.


Asunto(s)
Conducta , Encéfalo/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Neuronas/metabolismo , Alimentación Animal , Animales , Ansiedad/metabolismo , Ácido Araquidónico/metabolismo , Mapeo Encefálico/métodos , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Exposición Materna , Aprendizaje por Laberinto , Modelos Biológicos , Enfermedades del Sistema Nervioso/prevención & control , Plasticidad Neuronal , Neuronas/fisiología , Embarazo , Preñez , Ratas
20.
J Neurotrauma ; 28(10): 2113-22, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21851229

RESUMEN

The pathology of traumatic brain injury (TBI) is characterized by the decreased capacity of neurons to metabolize energy and sustain synaptic function, likely resulting in cognitive and emotional disorders. Based on the broad nature of the pathology, we have assessed the potential of the omega-3 fatty acid docosahexaenoic acid (DHA) to counteract the effects of concussive injury on important aspects of neuronal function and cognition. Fluid percussion injury (FPI) or sham injury was performed, and rats were then maintained on a diet high in DHA (1.2% DHA) for 12 days. We found that DHA supplementation, which elevates brain DHA content, normalized levels of brain-derived neurotrophic factor (BDNF), synapsin I (Syn-1), cAMP-responsive element-binding protein (CREB), and calcium/calmodulin-dependent kinase II (CaMKII), and improved learning ability in FPI rats. It is known that BDNF facilitates synaptic transmission and learning ability by modulating Syn-I, CREB, and CaMKII signaling. The DHA diet also counteracted the FPI-reduced manganese superoxide dismutase (SOD) and Sir2 (a NAD+-dependent deacetylase). Given the involvement of SOD and Sir2 in promoting metabolic homeostasis, DHA may help the injured brain by providing resistance to oxidative stress. Furthermore, DHA normalized levels of calcium-independent phospholipase A2 (iPLA2) and syntaxin-3, which may help preserve membrane homeostasis and function after FPI. The overall results emphasize the potential of dietary DHA to counteract broad and fundamental aspects of TBI pathology that may translate into preserved cognitive capacity.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/psicología , Cognición/efectos de los fármacos , Ácidos Docosahexaenoicos/uso terapéutico , Hemostasis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Western Blotting , Lesiones Encefálicas/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Suplementos Dietéticos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Membranas/efectos de los fármacos , Membranas/patología , Proteínas Munc18/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfolipasas A2 Calcio-Independiente/metabolismo , Ratas , Ratas Sprague-Dawley , Sirtuina 1/metabolismo , Superóxido Dismutasa/metabolismo , Sinapsinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA