Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Phytomedicine ; 126: 155348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335913

RESUMEN

BACKGROUND: (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS: A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS: Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION: Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.


Asunto(s)
Dioxoles , Lignanos , Lesiones Precancerosas , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Lignanos/farmacología , Proliferación Celular , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/patología , Apoptosis , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral
2.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2500-2511, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282879

RESUMEN

This study aimed to elucidate the effect and underlying mechanism of Bovis Calculus in the treatment of ulcerative colitis(UC) through network pharmacological prediction and animal experimental verification. Databases such as BATMAN-TCM were used to mine the potential targets of Bovis Calculus against UC, and the pathway enrichment analysis was conducted. Seventy healthy C57BL/6J mice were randomly divided into a blank group, a model group, a solvent model(2% polysorbate 80) group, a salazosulfapyridine(SASP, 0.40 g·kg~(-1)) group, and high-, medium-, and low-dose Bovis Calculus Sativus(BCS, 0.20, 0.10, and 0.05 g·kg~(-1)) groups according to the body weight. The UC model was established in mice by drinking 3% dextran sulfate sodium(DSS) solution for 7 days. The mice in the groups with drug intervention received corresponding drugs for 3 days before modeling by gavage, and continued to take drugs for 7 days while modeling(continuous administration for 10 days). During the experiment, the body weight of mice was observed, and the disease activity index(DAI) score was recorded. After 7 days of modeling, the colon length was mea-sured, and the pathological changes in colon tissues were observed by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß), interleukin-6(IL-6), and interleukin-17(IL-17) in colon tissues of mice were detected by enzyme-linked immunosorbent assay(ELISA). The mRNA expression of IL-17, IL-17RA, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1ß, CXCL1, CXCL2, and CXCL10 was evaluated by real-time polymerase chain reaction(RT-PCR). The protein expression of IL-17, IL-17RA, Act1, p-p38 MAPK, and p-ERK1/2 was investigated by Western blot. The results of network pharmacological prediction showed that Bovis Calculus might play a therapeutic role through the IL-17 signaling pathway and the TNF signaling pathway. As revealed by the results of animal experiments, on the 10th day of drug administration, compared with the solvent model group, all the BCS groups showed significantly increased body weight, decreased DAI score, increased colon length, improved pathological damage of colon mucosa, and significantly inhibited expression of TNF-α,IL-6,IL-1ß, and IL-17 in colon tissues. The high-dose BCS(0.20 g·kg~(-1)) could significantly reduce the mRNA expression levels of IL-17, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1ß, CXCL1, and CXCL2 in colon tissues of UC model mice, tend to down-regulate mRNA expression levels of IL-17RA and CXCL10, significantly inhibit the protein expression of IL-17RA,Act1,and p-ERK1/2, and tend to decrease the protein expression of IL-17 and p-p38 MAPK. This study, for the first time from the whole-organ-tissue-molecular level, reveals that BCS may reduce the expression of pro-inflammatory cytokines and chemokines by inhibiting the IL-17/IL-17RA/Act1 signaling pathway, thereby improving the inflammatory injury of colon tissues in DSS-induced UC mice and exerting the effect of clearing heat and removing toxins.


Asunto(s)
Colitis Ulcerosa , Ratones , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/farmacología , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 2 Asociado a Receptor de TNF/farmacología , Factor 5 Asociado a Receptor de TNF/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Colon , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ARN Mensajero/metabolismo , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Modelos Animales de Enfermedad
3.
Phytomedicine ; 110: 154608, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586205

RESUMEN

BACKGROUND: Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS: We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS: Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS: Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.


Asunto(s)
Berberina , Neoplasias Gástricas , Humanos , Berberina/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Mitocondrias , Transducción de Señal , Apoptosis , Fitoquímicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral
4.
Zhongguo Zhong Yao Za Zhi ; 47(11): 3038-3048, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35718528

RESUMEN

Based on the brain-gut axis, the present study investigated the effect of Huanglian Houpo Decoction(HLHPD) in the treatment of ulcerative colitis(UC) and explored the mechanism in the regulation of 5-hydroxytryptamine(5-HT), substance P(SP), and vasoactive intestinal peptide(VIP) using modern technologies and molecular docking. Sixty male C57 BL/6 J mice were randomly divided into a blank control group, a model group, a sulfasalazine(SASP) group, and high-(5.00 g·kg~(-1)), medium-(2.50 g·kg~(-1)), and low-dose(1.25 g·kg~(-1)) HLHPD groups. The UC model was induced by oral administration of water containing 3% dextran sulfate sodium salt(DSS) in mice except those in the blank control group. After HLHPD was administered for 10 days, the mice were sacrificed for sample collection. Morphological changes of colon tissues were observed by HE staining. The expression of 5-HT, SP, VIP, tumor necrosis factor α(TNF-α), interleukin-6(IL-6), and interleukin-1ß(IL-1ß) in the hypothalamus, serum, and colon was determined by the enzyme-linked immunosorbent assay(ELISA). The expression of tryptophan hydroxylase 1(TPH1), SP, and VIP in colon tissues was evaluated by immunohistochemistry. The expression of brain-gut peptide receptors, such as 5-HT3 A, neurokinin receptor 1(NK-1 R), and VIP receptor 1(VPAC1) in colon tissues was investigated by Western blot. The binding affinity of the brain-gut peptide receptors to the main components of HLHPD was analyzed by molecular docking. After HLHPD intervention, UC mice showed increased body weight, reduced DAI score and occult blood, prolonged colon, down-regulated levels of TNF-α, IL-1ß, and IL-6 in colon tissues, and relieved pathological damage in the colon. The VIP levels in the colon were significantly up-regulated in the HLHPD groups. The high-and medium-dose HLHPD could significantly down-regulated SP and 5-HT in colon tissues and 5-HT in the serum, and up-regulated the VIP in the serum. The high-dose HLHPD group could down-regulate 5-HT and up-regulate VIP in the hypothalamus. It is suggested that HLHPD can reverse the levels of brain-gut peptides in UC mice to varying degrees. Correlation analysis results suggested that the expression levels of brain-gut peptides in the hypothalamus, serum, and colon tissues were related to inflammatory factors. Molecular docking results showed that berberine, coptisine, and epiberberine were presumedly the material basis for HLHPD in regulating the levels of 5-HT3 A, NK-1 R, and VPAC1. The main components of HLHPD may reduce colonic inflammation and pathological damage of colon tissues by regulating the activity of brain-gut peptides and their receptors, thereby reducing DSS-induced colitis in mice.


Asunto(s)
Colitis Ulcerosa , Animales , Eje Cerebro-Intestino , Colitis Ulcerosa/tratamiento farmacológico , Colon , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Serotonina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Phytomedicine ; 97: 153927, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35030387

RESUMEN

BACKGROUND: In folk medicine Coptis chinensis Franch (Huanglian in Chinese, HL) and Magnoliae officinalis (Houpo, HP) have been used to treat gastrointestinal disorders over hundreds of years, such as ulcers and inflammation. PURPOSE: To investigate the therapeutic effects of HL and HP on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis (UC) rats, and investigated its effect on the intestinal flora of UC rats. METHOD: TNBS 40 mg/kg was utilized to establish UC model. Rats were sacrificed after gavage for 7 days. Body weight loss, disease activity index (DAI), colonic mucosal damage index (CMDI) and histopathology were measured. Intestinal content samples were collected, and analyzed by 16 S rRNA sequencing. Western blot, immunohistochemistry and real-time polymerase chain reaction were used to evaluate the regulation mechanism of HL+HP in UC model rats. RESULTS: The results showed that the DAI score, CMDI score and histological score were significantly decreased in each group. The symptoms of diarrhea, hematochezia, colonic mucosal injury and congestion and edema were improved. Sequencing results of intestinal flora showed that the abundance of probiotics such as Akkermansia and Blautia was increased in HL group and HL+HP group, while probiotics such as Allobaculum and Alloprevotella were increased in HP group. The intestinal pathogenic bacteria such as Escherichia-Shigella and Clostridium_sensu_stricto_1 were decreased. In addition, HL+HP could also inhibit the inflammatory response and protect the integrity of the tight junction to play an anti-UC effect. CONCLUSION: Coptis chinensis Franch and Magnolia officinalis might prevent intestinal barrier damage by regulating intestinal flora imbalance and inhibit the inflammatory response.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Magnolia , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colon , Coptis chinensis , Modelos Animales de Enfermedad , Ratas , Ácido Trinitrobencenosulfónico
6.
J Ethnopharmacol ; 284: 114780, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34728318

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: ShexiangZhuifeng Analgesic Plaster (SZAP) is a traditional Chinese medicine and transdermal formulation composed of many Chinese herbs and active compounds. SZAP was recently approved by the China Food and Drug Administration for the treatment of pain associated with osteoarticular diseases and is preferred by most rheumatoid arthritis patients in China. However, its mechanism has not been elucidated in detail. AIM OF THE STUDY: We sought to determine the analgesic effect of SZAP in collagen-induced arthritis (CIA) rats and explore the underlying mechanisms of pain transmission, such as via the TRPV1 and P2X3 receptors. METHODS: After CIA was established, rats were treated with SZAP for 7 days. Paw thickness, arthritis score, and haematoxylin and eosin staining were used to evaluate the effectiveness of SZAP. Paw withdrawal threshold (PWT) and tail-flick latency (TFL) were used to estimate the analgesic effect of SZAP. The levels of PGE2, BK, 5-HT, SP, and CGRP in the serum and synovium were determined using ELISA kits, and ATP in the synovium was measured using HPLC. The expression of TRPV1 and P2X3 in the DRG was detected using western blotting and immunofluorescence. TRPV1 and P2X3 agonists were further used to determine the analgesic effects of SZAP on CIA rats based on PWT and TFL. RESULTS: SZAP not only significantly ameliorated arthritis scores and paw thickness by improving the pathological damage of synovial joints, but also remarkably alleviated pain in CIA rats. Further, treatment with SZAP significantly reduced peripheral 5-HT, PGE2 BK, SP, CGRP, and ATP. Additionally, the expression of TRPV1 and P2X3 in the DRG was markedly downregulated by SZAP. Interestingly, the analgesic effect of SZAP was weakened (reduction of PWT and TFL) when TRPV1 and P2X3 were activated by capsaicin or α,ß-meATP, respectively. CONCLUSION: SZAP ameliorates rheumatalgia by suppressing hyperalgesia and pain transmission through the inhibition of TRPV1 and P2X3 in the DRG of CIA rats.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Colágeno/toxicidad , Medicamentos Herbarios Chinos/farmacología , Fitoterapia , Receptores Purinérgicos P2X3/metabolismo , Canales Catiónicos TRPV/metabolismo , Administración Tópica , Animales , Capsaicina/farmacología , Diclofenaco/administración & dosificación , Diclofenaco/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Canales Catiónicos TRPV/genética
7.
Front Pharmacol ; 12: 641894, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746762

RESUMEN

At present, Stroke is still one of the leading causes of population death worldwide and leads to disability. Traditional Chinese medicine plays an important role in the prevention or treatment of stroke. l-borneol, a traditional Chinese medicine, has been used in China to treat stroke for thousands of years. However, its mechanism of action is unclear. After cerebral ischemia, promoting angiogenesis after cerebral ischemia and providing nutrition for the infarct area is an important strategy to improve the damage in the ischemic area, but it is also essential to promote neurogenesis and replenish new neurons. Here, our research shows that l-borneol can significantly improve the neurological deficits of pMCAO model rats, reduce cerebral infarction, and improve the pathological damage of cerebral ischemia. and significantly increase serum level of Ang-1 and VEGF, and significantly decrease level of ACE and Tie2 to promote angiogenesis. PCR and WB showed the same results. Immunohistochemistry also showed that l-borneol can increase the number of CD34 positive cells, further verifying that l-borneol can play a neuroprotective effect by promoting angiogenesis after cerebral ischemia injury. In addition, l-borneol can significantly promote the expression level of VEGF, BDNF and inhibit the expression levels of TGF-ß1 and MMP9 to promote neurogenesis. The above suggests that l-borneol can promote angiogenesis coupled neurogenesis by regulating Ang1-VEGF-BDNF to play a neuroprotective effect. Molecular docking also shows that l-borneol has a very high binding rate with the above target, which further confirmed the target of l-borneol to improve cerebral ischemic injury. These results provide strong evidence for the treatment of cerebral ischemia with l-borneol and provide reference for future research.

8.
Mol Med Rep ; 23(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33604685

RESUMEN

Yuan­zhi­san (YZS) is a classic type of Traditional Chinese Medicine, which has been reported to aid in the treatment of Alzheimer's disease (AD). The present study aimed to investigate the effects of YZS on tau protein aggregation, a hallmark of AD pathology, and its possible mechanisms. The results demonstrated that YZS improved learning and memory abilities, and decreased the severity of AD pathology in ß­amyloid (Aß1­40)­induced AD rats. Moreover, YZS administration inhibited the hyperphosphorylation of tau protein at Ser199 and Thr231 sites. Several vital enzymes in the ubiquitin­proteasome system (UPS), including ubiquitin­activating enzyme E1a/b, ubiquitin­conjugating enzyme E2a, carboxyl terminus of Hsc70­interacting protein, ubiquitin C­236 terminal hydrolase L1 and 26S proteasome, were all significantly downregulated in AD rats, which indicated an impaired enzymatic cascade in the UPS. In addition, it was identified that YZS treatment partly increased the expression levels of these enzymes in the brains of AD rats. In conclusion, the present results suggested that YZS could effectively suppress the hyperphosphorylation of tau proteins, which may be partially associated with its beneficial role in restoring functionality of the UPS.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/genética , Medicamentos Herbarios Chinos/farmacología , Fragmentos de Péptidos/genética , Agregado de Proteínas/efectos de los fármacos , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Fosforilación/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Ratas , Ubiquitina/genética
9.
Life Sci ; 260: 118418, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931799

RESUMEN

AIMS: Stroke is a devastating event with a limited choice of intervention. Benzoinum is frequently used to treat stroke in traditional Chinese medicine. Our team has found that the neuroprotection of benzoinum may related to angiogenesis, but the exact biological mechanism is unclear. The objective of this study was to explore its biological mechanism of angiogenesis in cerebral ischemia model rats. MAIN METHODS: First, network pharmacology and molecular docking were performed to predict the possible targets and mechanisms of benzoinum in treating ischemic stroke. The best dose was then selected according to pharmacodynamic indexes such as those for neurological deficit, cerebral infarction rate, and brain histopathology in middle cerebral artery occlusion (MCAO) model rats. Finally, RT-PCR, Western Blot and immunohistochemical analysis were applied to verify the prediction results from molecular docking. KEY FINDINGS: Network pharmacology and molecular docking demonstrated that the targets of treating cerebral ischemia were PDE4D, ACE and TTR, and the mechanism may be related to the ACE-AngI-VEGF signaling pathway. Experimental verification results suggested that 0.50 g/kg and 1.00 g/kg benzoinum could significantly protect against neurological deficit and reduce cerebral infarction rate in the cerebral cortex and hippocampus in MCAO model rats. At an optimal dose, benzoinum could significantly up-regulate VEGF, SHH and ANG-1, yet down-regulate ACE expression in MCAO model rats. SIGNIFICANCE: Balsamic acid is the active ingredient of benzoinum that protects against ischemic stroke and the possible mechanism is related to the promotion of angiogenesis via regulating ACE-AngI-VEGF pathway.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Infarto de la Arteria Cerebral Media/complicaciones , Fármacos Neuroprotectores/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Medicamentos Herbarios Chinos/farmacología , Masculino , Simulación del Acoplamiento Molecular , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fármacos Neuroprotectores/uso terapéutico , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Ribonucleasa Pancreática/genética , Ribonucleasa Pancreática/metabolismo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Biomed Pharmacother ; 117: 109189, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31387191

RESUMEN

Paris polyphylla. is a traditional medicinal herb that has long been used to prevent cancer in many Asian countries. Polyphyllin I (PPI), an important bioactive constituent of Paris polyphylla, has been found to exhibit a wide variety of anticancer activities in many types of cancer cells. However, the effects of PPI on human gastric carcinoma cells and its mechanism of action remain unclear. In this study, we examined the effective anti-gastric carcinoma activity of PPI and its underlying mechanism of action in HGC-27 cells. In vitro, sub-micromolar concentrations of PPI inhibited HGC-27 cell proliferation with an IC50 of 0.34 ± 0.06 µM after a 72-h treatment. In vivo, 3 mg/kg PPI significantly inhibited proliferation of HGC-27 tumor cells, with a 78.8% inhibition rate compared to paclitaxel, and demonstrated higher safety. Analysis of MDC and mGFP-LC3 fluorescence, Western blotting and flow cytometry indicated that PPI induced cell cycle arrest in HGC-27 cells by promoting the conversion of LC3-I to LC3-II and by downregulating cyclin B1. Furthermore, Western blotting showed that PPI inhibited the autophagy-regulating PDK1/Akt/mTOR signaling pathway in vitro and in vivo. In addition, immunohistochemistry and TUNEL staining revealed that PPI decreased Ki67 expression and increased the percentage of apoptotic cells in HGC-27 xenograft tumors. These data indicate that PPI is an PDK1/Akt/mTOR signaling inhibitor and of therapeutic relevance for gastric cancer treatment and that the rhizome of Paris polyphylla deserves further clinical investigation as an alternative therapy for gastric cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diosgenina/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Línea Celular Tumoral , Ciclina B1/metabolismo , Diosgenina/farmacología , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Mol Pharmacol ; 96(5): 589-599, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31462456

RESUMEN

Licorice is a medicinal herb widely used to treat inflammation-related diseases in China. Isoliquiritigenin (ISL) is an important constituent of licorice and possesses multiple bioactivities. In this study, we examined the selective anti-AML (acute myeloid leukemia) property of ISL via targeting FMS-like tyrosine kinase-3 (FLT3), a certified valid target for treating AML. In vitro, ISL potently inhibited FLT3 kinase, with an IC50 value of 115.1 ± 4.2 nM, and selectively inhibited the proliferation of FLT3-internal tandem duplication (FLT3-ITD) or FLT3-ITD/F691L mutant AML cells. Moreover, it showed very weak activity toward other tested cell lines or kinases. Western blot immunoassay revealed that ISL significantly inhibited the activation of FLT3/Erk1/2/signal transducer and activator of transcription 5 (STAT5) signal in AML cells. Meanwhile, a molecular docking study indicated that ISL could stably form aromatic interactions and hydrogen bonds within the kinase domain of FLT3. In vivo, oral administration of ISL significantly inhibited the MV4-11 flank tumor growth and prolonged survival in the bone marrow transplant model via decreasing the expression of Ki67 and inducing apoptosis. Taken together, the present study identified a novel function of ISL as a selective FLT3 inhibitor. ISL could also be a potential natural bioactive compound for treating AML with FLT3-ITD or FLT3-ITD/F691L mutations. Thus, ISL and licorice might possess potential therapeutic effects for treating AML, providing a new strategy for anti-AML.


Asunto(s)
Chalconas/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Glycyrrhiza , Leucemia Mieloide Aguda/tratamiento farmacológico , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Administración Oral , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Simulación del Acoplamiento Molecular/métodos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Tirosina Quinasa 3 Similar a fms/metabolismo
12.
BMC Complement Altern Med ; 18(1): 250, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200948

RESUMEN

BACKGROUND: Angiogenesis is a pathobiological hallmark of gastric cancer. However, rare studies focus on angiogenesis in gastric precancerous lesions (GPL). Weipixiao (WPX), a Chinese herbal preparation, is proved clinically effective in treating GPL. Here, we evaluated WPX's anti-angiogenic potential for GPL, and also investigated the possibility of its anti-angiogenic mechanisms. METHODS: HPLC analysis was applied to screen the major chemical components of WPX. After modeling N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GPL in male Sprague-Dawley rats, different doses of WPX were administrated orally for 10 weeks. Next, we performed histopathological examination using routine H&E staining and HID-AB-PAS staining. In parallel, we assessed angiogenesis revealed by microvessel density (MVD) using CD34 immunostaining, and subsequently observe microvessel ultrastructure in gastric mucosa under Transmission Electron Microscope. Finally, we detect expression of angiogenesis-associated markers VEGF and HIF-1α using immunohistochemistry. Moreover, mRNA expressions of ERK1, ERK2, Cylin D1 as well as HIF-1α in gastric mucosa were determined by quantitative real-time reverse transcription- polymerase chain reaction. RESULTS: We observed the appearance of active angiogenesis in GPL rats, and demonstrated that WPX could reduce microvascular abnormalities and attenuate early angiogenesis in most of GPL specimens with a concomitant regression of most intestinal metaplasia (IM) and a portion of gastric epithelial dysplasia (GED). In parallel, WPX could suppress HIF-1α mRNA expression (P < 0.01) as well as protein expression (although without statistical significance), and could markedly inhibit VEGF protein expression in GPL rats. Mechanistically, WPX intervention, especially at low dose, caused a significant decrease in the ERK1 and Cylin D1 mRNA levels. However, WPX might probably have no regulatory effect on ERK2 amplification. CONCLUSIONS: WPX could attenuate early angiogenesis and temper microvascular abnormalities in GPL rats. This might be partly achieved by inhibiting on the angiogenesis-associated markers HIF-1α and VEGF, and on the ERK1/Cylin D1 aberrant activation.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Medicamentos Herbarios Chinos/farmacología , Mucosa Gástrica/efectos de los fármacos , Neovascularización Patológica , Neoplasias Gástricas/irrigación sanguínea , Estómago/efectos de los fármacos , Animales , Mucosa Gástrica/irrigación sanguínea , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ratas , Ratas Sprague-Dawley , Estómago/irrigación sanguínea , Estómago/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
J Tradit Chin Med ; 38(5): 705-713, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-32185987

RESUMEN

OBJECTIVE: To investigate the mechanism underlying the action of Weipixiao (WPX) in a rat's model with ameliorating gastric precancerous lesions (GPL). METHODS: HPLC analysis was performed to identify the chemical constituents of WPX preparation. Sprague- Dawley rats were randomly assigned into control group, model group, vitacoenzyme group, high-dose WPX group (H-WPX), medium-dose WPX group (M-WPX) and low-dose WPX group (L-WPX). After modeling, the treated rats were administrated WPX or vitacoenzyme intragastrically for consecutive 10 weeks. Gene and protein expressions of GSK3¦Â, C-myc, Cylin E were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) and immunohistochemistry, respectively. RESULTS: WPX could efficiently attenuate the pathological alterations of ""non-progressive GPL"" in rats. As expected, mRNA and protein levels of C-myc and Cylin E were up-regulated in model rats, while GSK3¦Â expression down-regulated (P < 0.01). WPX treatment, especially at low dose, could significantly down-regulate the mRNA as well as protein levels of C-myc, and could lead to remarkable up-regulation of mRNA and protein levels of GSK3¦Â in GPL rats (P < 0.05). However, no significant changes were observed in WPX-treated rats. CONCLUSION: Our findings suggested that WPX-mediated attenuation of GPL pathological alterations might be due to its regulatory effect on the expressions of GSK3¦Â and C-myc, and on the dysregulation of Wnt/GSK3¦Â pathway.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Mucosa Gástrica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Animales , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Glucógeno Sintasa Quinasa 3/genética , Humanos , Masculino , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas c-myb/genética , Ratas , Ratas Sprague-Dawley
14.
Oncotarget ; 8(61): 103087-103099, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262547

RESUMEN

Targeted therapies for the treatment of acute myeloid leukemia (AML), specifically the FLT3 inhibitors, have shown promising results. Nevertheless, it is very unlikely that inhibitors which target a single pathway will provide long-term disease control. Here, we report the characterization of crotonoside, a natural product extracted from Chinese medicinal herb, Croton, for the treatment of AML via inhibition of FLT3 and HDAC3/6. In vitro, crotonoside exhibited selective inhibition in AML cells. In vivo, crotonoside treatment at 70 and 35 mg/kg/d produced significant AML tumor inhibition rates of 93.5% and 73.6%, respectively. Studies on the anti-AML mechanism of crotonoside demonstrated a significant inhibition of FLT3 signaling, cell cycle arrest in G0/G1 phase, and apoptosis. In contrast to classic FLT3 inhibitor; sunitinib, crotonoside was able to selectively suppress the expression of HDAC3 and HDAC6 without altering the expression of other HDAC isoforms. Inhibitors of HDAC3 and HDAC6; RGFP966 and HPOB, respectively, also exhibited selective inhibition in AML cells. Furthermore, we established novel signaling pathways including HDAC3/NF-κB-p65 and HDAC6/c-Myc besides FLT3/c-Myc which are aberrantly regulated in the progression of AML. In addition, crotonoside alone or the combination of sunitinib/RFP966/HPOB exhibited a significant post-inhibition effect in AML cells by the inhibition of FLT3 and HDAC3/6. Inhibitors targeting the FLT3 and HDAC3/6 might provide a more effective treatment strategy for AML. Taken together, the present study suggests that crotonoside could be a promising candidate for the treatment of AML, and deserves further investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA