Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Food Sci ; 88(12): 5063-5077, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37921543

RESUMEN

To comprehensively study the ginsenosides distribution in the various tissues of American ginseng, the qualitative and quantitative-targeted and nontargeted mass spectroscopic methods were established using the high-performance liquid chromatography coupled with Qtrap triple quadrupole mass spectrometry (HPLC-QtrapQQQ-MS). The total ginsenosides of the root, stem, and leaf of American ginseng were determined by a colorimetric method, and the contents showed the order from high to low root, stem, and leaf. Eighty-two kinds of ginsenosides were detected in the different parts of American ginseng by enhanced mass scan-information-dependent data acquisition (IDA)-enhanced product ion (EPI) scan mode, including 69 from the root, 62 from the stem, and 48 from the leaf. An HPLC-multiple reaction monitoring (MRM) method was established, and 28 representative ginsenosides were further quantified in the three parts. Nearly all ginsenosides had the highest contents in the root and the lowest content in the leaf. Three types of ginsenosides (protopanaxadiol [PPD]-, protopanaxatiol [PPT]-, and oleanolic acid [OA]-types) were analyzed by precursor ion-IDA-EPI and MRM-IDA-EPI scan modes. Root had the most abundant ginsenosides in PPD- and PPT-type ginsenosides. Meanwhile, the OA-type ginsenosides are significantly enriched in the stem and leaf of American ginseng. The results provided a supplement to the quality assessment of American ginseng. PRACTICAL APPLICATION: The distribution profile of ginsenosides in the parts of American ginseng is different. Except for the root, the stem, and leaf of American ginseng have the most abundant ginsenosides in oleanolic acid type. The results reported herein can help the manufacturers choose appropriate materials to extract the ginsenosides.


Asunto(s)
Ginsenósidos , Ácido Oleanólico , Panax , Espectrometría de Masas en Tándem/métodos , Panax/química , Cromatografía Líquida de Alta Presión/métodos
2.
Int J Biol Macromol ; 216: 14-23, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35780917

RESUMEN

In addition to its high nutritious value, sea cucumber has been recognized by folk medicine for a long time. This study investigated the structure and hyperglycemic activity of a neutral polysaccharide (NPsj) from sea cucumber Stichopus japonicus, whose molecular weight was determined as 301.75 kDa by HPGPC method. Monosaccharide composition analysis indicated that NPsj is a glucan. The structure of NPsj was obtained by combining the analysis of methylation analysis, FTIR, NMR, periodate oxidation, Smith degradation and ESI-MS, which is mainly composed of (1 â†’ 4)-α-d-glucoses with ß-d-glucose(1→) branches substituted at O-6 every 7-9 of 1,4 linked glucoses. An in vitro insulin resistance Hep G2 cells model and a 3 T3-L1 cells model were established, and the NPsj has significant effect to increase glucose consumption with no toxicity at 10-100 µg/mL. Furthermore, NPsj upregulates the phosphorylation of Akt1 and down-regulated GSK3ß, and then reduces the phosphorylation of GS, indicating its mechanism of ameliorating insulin resistance via Akt/GSK3ß/GS signaling pathway.


Asunto(s)
Resistencia a la Insulina , Pepinos de Mar , Stichopus , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Polisacáridos/metabolismo , Polisacáridos/farmacología , Pepinos de Mar/química , Stichopus/metabolismo
3.
Food Funct ; 13(9): 5343-5352, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35466985

RESUMEN

In this study, curcumin (Cur)-loaded chondroitin sulfate (CS)-sodium caseinate (NaCas)-stabilized foxtail millet prolamin (FP) composite nanoparticles (NPs) were fabricated via a one-pot process. FP is capable of self-assembly via liquid antisolvent precipitation under neutral and alkaline conditions (pH 7.0-11.0). Under this condition, the microstructures of hydrophobic FP cores, amphiphilic NaCas and hydrophilic CS shells were fabricated readily by a one-pot method. With an optimal FP/NaCas/CS weight ratio of 3 : 2 : 4, FP-NaCas-CS NPs shared globular microstructures at about 145 nm, and hydrophobic interactions, electrostatic forces, and hydrogen bonds were the main driving forces for the formation and maintenance of stable FP-NaCas-CS NPs. CS coating enhanced the pH stability but reduced the ionic strength stability. The formed NPs were stable over a wide pH range from 2.0 to 8.0 and elevated salt concentrations from 0 to 3 mol L-1 NaCl. FP-NaCas-CS NPs exhibited a higher Cur encapsulation efficiency of 93.4% and re-dispersion capability after lyophilization. Moreover, CS coating promoted selective accumulation in CD44-overexpressing HepG2 cells, resulting in higher inhibition of tumor growth compared to free Cur and FP-NaCas NP-encapsulated Cur. As for comparison, encapsulated Cur exhibited reduced cytotoxicity on normal liver cells L-O2. This preclinical study suggests that FP-NaCas-CS NPs could be very beneficial in terms of encapsulating hydrophobic drugs, improving the effectiveness of cancer therapies and reducing side effects on normal tissues.


Asunto(s)
Curcumina , Nanopartículas , Neoplasias , Setaria (Planta) , Caseínas/química , Sulfatos de Condroitina/química , Curcumina/química , Humanos , Nanopartículas/química , Tamaño de la Partícula , Prolaminas
4.
Food Chem ; 381: 132268, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121326

RESUMEN

Foxtail millet nanoparticles with smaller mean size at ∼130 nm and narrower polydispersity index at ∼0.05 were prepared in citric acid-potassium phosphate buffer (pH 8.0). Through lecithin (Lec)/sodium alginate (Alg) coating, a hydrophobic FP core, a Lec monolayer, and a hydrophilic Alg shell were formed spontaneously. Dissociation experiment revealed that electrostatic interaction and hydrogen bonding were main driving forces for the formation and maintenance of stable FP-Lec/Alg NPs. In addition, Lec/Alg coated NPs exerted an important role in sustaining the controlled release of the encapsulated quercetin under simulated gastrointestinal tract conditions. Cellular uptake test exhibited that FP-Lec-Alg NPs cold enter epithelial cells in a time-dependent manner, showing the maximum uptake efficiency were 22% and 24%, respectively, after 2 h of incubation. About 220 nm NPs can be recovered by adding 10% (w/v) sucrose. FP-Lec-Alg NPs were found to be promising delivery materials to deliver quercetin and improve its bioavailability.


Asunto(s)
Nanopartículas , Setaria (Planta) , Alginatos/química , Ácido Cítrico , Lecitinas , Nanopartículas/química , Fosfatos , Compuestos de Potasio , Prolaminas , Quercetina , Sodio
5.
Carbohydr Polym ; 262: 117969, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838834

RESUMEN

A fucosylated chondroitin sulfate was isolated from the body wall of sea cucumber Stichopus japonicus (FCSsj), whose structure was characterized by NMR spectroscopy and HILIC-FTMS. At the ratio of 1.00:0.26:0.65, three fucosyl residues were found: 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S), which were only linked to the O-3 of glucuronic acid residues (GlcA). Besides mono-fucosyl moieties, di-fucosyl branches, namely Fuc2,4Sα(1→3)Fuc4S, were also found to be attached to the O-3 of GlcA. The antidiabetic activity of FCSsj was evaluated using glucosamine induced insulin resistant (IR) Hep G2 cells in vitro. It was found that FCSsj significantly promoted the glucose uptake and glucose consumption of IR-Hep G2 cells in a dose-dependent manner, and could alleviate the cell damage. Furthermore, FCSsj could promote the glycogen synthesis in the glucosamine-induced IR-Hep G2 cells. These results provided a supplement for studying the antidiabetic activity of FCSsj.


Asunto(s)
Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Stichopus/química , Animales , Fucosa/química , Glucosa/metabolismo , Ácido Glucurónico/química , Glucógeno/metabolismo , Células Hep G2 , Humanos , Resistencia a la Insulina , Espectroscopía de Resonancia Magnética/métodos , Pepinos de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA