Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 114: 154782, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990009

RESUMEN

BACKGROUND: Gout is a crystal related arthropathy caused by monosodium urate deposition. At present, the identification of appropriate treatments and new drugs to reduce serum uric acid levels and gout risk is a major research area. PURPOSE: Theaflavins are naturally occurring compounds characterized by a benzodiazepine skeleton. The significant benefits of theaflavins have been well documented. A large number of studies have been carried out and excellent anti-gout results have been achieved in recent years. STUDY DESIGN: A comprehensive analysis of the mechanism of the anti-gout effect of theaflavins is presented through a literature review and network pharmacology prediction, and strategies for increasing the bioavailability of theaflavins are summarized. METHODS: In this review, the active components and pharmacological mechanisms of theaflavins in the treatment of gout were summarized, and the relationship between theaflavins and gout, the relevant components, and the potential mechanisms of anti-gout action were clarified by reviewing the literature on the anti-gout effects of theaflavins and network pharmacology. RESULTS: Theaflavins exert anti-gout effects by down regulating the gene and protein expression of glucose transporter 9 (GLUT9) and uric acid transporter 1 (URAT1), while upregulating the mRNA expression levels of organic anion transporter 1 (OAT1), organic cation transporter N1 (OCTN1), organic cation transporters 1/2 (Oct1/2), and organic anion transporter 2 (OAT2). Network pharmacology prediction indicate that theaflavins can regulate the AGE-RAGE and cancer signaling pathways through ATP-binding cassette subfamily B member 1 (ABCB1), recombinant mitogen activated protein kinase 14 (MAPK14), telomerase reverse tranase (TERT), signal transducer and activator of transcription 1 (STAT1), matrix metalloproteinase 2 (MMP2), B-cell lymphoma-2 (BCL2), and matrix metalloproteinase 14 (MMP14) targets for anti-gout effects. CONCLUSION: This review presents the mechanisms of anti-gout action of theaflavins and strategies for improving the bioavailability of theaflavins, as well as providing research strategies for anti-gout treatment measures and the development of novel anti-gout drugs.


Asunto(s)
Gota , Humanos , Animales , Gota/tratamiento farmacológico , Gota/metabolismo , Hiperuricemia/etiología , Ácido Úrico/metabolismo , Supresores de la Gota/química , Supresores de la Gota/farmacocinética , Supresores de la Gota/uso terapéutico , Disponibilidad Biológica
2.
Fundam Clin Pharmacol ; 36(6): 1083-1098, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35535756

RESUMEN

The male flowers of Eucommia ulmoides Oliv. (MFEU) was a natural product that could alleviate fatigue and accelerate fatigue alleviation. Nonetheless, the active ingredients and underlying pharmacological mechanisms remain unknown. This study aimed to decode the active ingredients and potential action mechanisms of MFEU in the therapy of anti-fatigue using an integrated UPLC-MS analysis, network pharmacology approach, and cell experiments. Characterizations of chemical constituents of MFEU extract were identified by UPLC-Q-TOF-MS. The corresponding drug targets were retrieved from the drug target database and used to construct the "composite-target-pathway" network. The Cytoscape was used to identify potential protein targets of these MFEU components, indicating that 24 anti-fatigue compounds in MFEU regulate 18 anti-fatigue-related targets in 10 signaling pathways. The 16 components of MFEU were verified at the cellular level. The results of cell experiments showed that MFEU extract (0.361 µg/ml), Caffeic acid, Deacetylasperulosidic acid, Naringenin, Acanthoside B, Geniposidic acid, Rutin, and Quercetin could promote testosterone secretion on Leydig cells at 50 µM. The MFEU extract and seven compounds in MFEU might play a role in anti-fatigue by participating in the regulation of testosterone secretion. Finally, the results of PCR analysis showed that MFEU promotes the secretion of testosterone, which is related to CYPIIa1 and 17ß-HSD, STAR in the signal pathway of testosterone synthesis. This study provides a basis for further exploring the anti-fatigue mechanism of MFEU, adopting the method of multi-compound and multi-target.


Asunto(s)
Medicamentos Herbarios Chinos , Eucommiaceae , Eucommiaceae/química , Eucommiaceae/metabolismo , Cromatografía Liquida , Farmacología en Red , Espectrometría de Masas en Tándem/métodos , Flores , Extractos Vegetales/farmacología , Testosterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA