Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 809-818, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621885

RESUMEN

Scutellariae Radix extract is one of the important components in Shuganning Injection. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method was established for simultaneously determining five components in Shuganning Injection and Scutellariae Radix extract in bile, urine, and feces of rats, so as to reveal the difference in the excretion process of Shuganning Injection and Scutellariae Radix extract in rats and explore the law of the excretion process of the five components in vivo before and after the compatibility of Scutellariae Radix. Rats were injected with Shuganning Injection and Scutellariae Radix extract(4.2 mL·kg~(-1)), respectively, and the excretion of baicalin, baicalein, oroxylin A, oroxylin A-7-O-ß-D-glucuronide, and scutellarin in bile, urine, and feces of rats in 24 h was observed. The results showed that except for baicalin, the other four index components were excreted as prototype components in a high proportion after intravenous injection of Shuganning Injection and Scutellariae Radix extract in rats, respectively. The excretion of each component was relatively high in urine and less in feces and bile. After the compatibility of Scutellariae Radix extract, the accumulative excretion of five index components in rats all decreased. Among them, the cumulative excretion of baicalein in bile, urine, and feces significantly decreased by 26.67%, 48.11%, and 31.01%. The cumulative excretion of baicalin in bile, urine, and feces decreased significantly by 70.69%, 19.43%, and 31.22%. The result showed that the five index components in Scutellariae Radix extract were mainly excreted by the kidneys, and other components in Shuganning Injection delayed the excretion process and prolonged the residence time. This study is of great significance for elucidating the compatibility rationality of Shuganning Injection.


Asunto(s)
Bilis , Scutellaria baicalensis , Ratas , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Flavonoides , Heces , Cromatografía Líquida de Alta Presión
2.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069381

RESUMEN

Ardisiae Crenatae Radix is an ethnic medicinal herb with good anti-inflammatory activity. Ardisiacrispin B is one of the main components in Ardisiae Crenatae Radix extract, with a content of up to 16.27%, and it may be one of the pharmacological components through which Ardisiae Crenatae Radix exerts anti-inflammatory activity. At present, reports on ardisiacrispin B mainly focus on anti-tumor effects, and there have been no reports on anti-inflammatory activities. As a triterpenoid saponin, due to its large molecular weight and complex structure, the composition of substances that function in the body may include other forms after metabolism, in addition to compounds with original structures. Exploring the anti-inflammatory effects on the prototypes and metabolites of the compound may provide a more comprehensive response to the characteristics of ardisiacrispin B's anti-inflammatory action. In this study, ardisiacrispin B was analyzed for metabolites to explore its metabolic processes in vivo. Subsequently, the anti-inflammatory effects of the prototypes and metabolites were further analyzed through network pharmacology, with the expectation of discovering the signaling metabolic pathways through which they may act. Finally, the anti-inflammatory effects of ardisiacrispin B in vitro and the effects on key signaling pathways at the protein level were explored. The results of this study showed that the isolated compounds were confirmed to be ardisiacrispin B. After the metabolite analysis, a total of 26 metabolites were analyzed, and the metabolism process in rats mainly involves oxidation, dehydration, glucuronide conjugation, and others. Speculation as to the anti-inflammatory molecular mechanisms of the prototypes and metabolites of ardisiacrispin B revealed that it may exert its anti-inflammatory effects mainly by affecting the PI3K-AKT pathway. Further anti-inflammatory mechanisms demonstrated that ardisiacrispin B had a good anti-inflammatory effect on LPS-induced RAW264.7 cells and a strong inhibitory effect on NO, TNF-α, and IL-1ß release in cells. Furthermore, it had significant inhibitory effects on the expression of PI3K, P-PI3K, AKT, and P-AKT. This study supplements the gaps in the knowledge on the in vivo metabolic process of ardisiacrispin B and explores its anti-inflammatory mechanism, providing an experimental basis for the development and utilization of pentacyclic triterpenoids.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Saponinas , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Farmacología en Red , Saponinas/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Simulación del Acoplamiento Molecular
3.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6183-6190, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114225

RESUMEN

Traditional Chinese medicine(TCM) compound preparations have complex compositions. As a widely used TCM injection, Shuganning Injection, its in vivo processes are not yet fully understood. Determining the plasma protein binding rate is of great significance for pharmacokinetic and pharmacodynamic studies. In this experiment, the equilibrium dialysis method combined with UPLC-MS/MS technology was used to determine the plasma protein binding rates of 10 components, including p-hydroxyacetophenone, caffeic acid, baicalein, oroxylin A, geniposide, baicalin, cynaroside, oroxylin A-7-O-ß-D-glucuronide, scutellarin, and hyperoside, in Shuganning Injection in rat and human plasma to provide a theoretical basis for further elucidating the in vivo processes of Shuganning Injection and guiding clinical medication. The results showed that, except for baicalein and geniposide, the plasma protein binding rates of the other eight components were higher in human plasma than in rat plasma, and there were interspecies differences. In human plasma, except for geniposide, caffeic acid, and baicalin, the plasma protein binding rates of the remaining seven components were above 80%, with baicalein and oroxylin A exceeding 90%. All components exhibit a high level of binding to plasma proteins, with the exception of geniposide.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Humanos , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Ratas Sprague-Dawley , Cromatografía Líquida con Espectrometría de Masas , Unión Proteica , Diálisis Renal , Proteínas Sanguíneas , Cromatografía Líquida de Alta Presión/métodos
4.
Phytomedicine ; 119: 154983, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586161

RESUMEN

BACKGROUND: Biancaea decapetala (Roth) O.Deg. (Fabaceae) is used to treat colds, fever, and rheumatic pain caused by inflammation. However, the mechanism underlying its anti-inflammatory properties remains unclear. PURPOSE: This study aimed to evaluate the anti-inflammatory activity of Biancaea decapetala extract (BDE) in vitro and in vivo and explore the possible underlying mechanism and potential targets. METHODS: The release of nitric oxide (NO) and inflammatory cytokines in LPS-stimulated RAW264.7 cells and rats were measured using Griess reagent and enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) staining was employed to examine the pathology of animal tissues. Transcriptome analysis was performed to screen the pathways related to BDE-mediated inhibition of inflammation, and the expression of related proteins was measured using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, ELISA, and immunofluorescence methods. Surface Plasmon Resonance (SPR) and the Drug Affinity Reaction Target Stability (DARTS) method were used to verify whether BDE binds to TNF-α target protein, while a L929 cell model and NF-κB gene reporter systematic method were used to investigate the inhibitory effect of BDE on the activity of TNF-α protein. RESULTS: BDE inhibited the expression of TNF-α, IL-1ß, IL-6, and NO in RAW264.7 cells and rats, and improved the pathological changes in lung tissue. RNA-seq showed that BDE may regulate the TNF/Akt/NF-κB pathway to inhibit inflammation onset. BDE significantly downregulated the mRNA expression of TNF-α, IL-6, IL-1ß, and that of relevant proteins, including TNF-α, p-p65, p-Akt, p-IκBα. Furthermore, BDE inhibited the nuclear translocation of NF-κB (p65) and the activation of the Akt pathway by SC79. The L929 cell model, luciferase reporter gene analysis, DARTS, and SPR experiments showed that BDE may bind to TNF-α and inhibit the TNF-α-NF-κB pathway. CONCLUSION: BDE may target TNF-α to inhibit the TNF/Akt/NF-κB pathway, thereby attenuating inflammation. These findings reveal the anti-inflammatory effects and mechanisms of BDE and provide a theoretical basis for the further development and utilization of BDE.


Asunto(s)
Fabaceae , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Lipopolisacáridos/farmacología
5.
Acta Pharm Sin B ; 13(6): 2559-2571, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425046

RESUMEN

Existing traditional Chinese medicine (TCM)-related databases are still insufficient in data standardization, integrity and precision, and need to be updated urgently. Herein, an Encyclopedia of Traditional Chinese Medicine version 2.0 (ETCM v2.0, http://www.tcmip.cn/ETCM2/front/#/) was constructed as the latest curated database hosting 48,442 TCM formulas recorded by ancient Chinese medical books, 9872 Chinese patent drugs, 2079 Chinese medicinal materials and 38,298 ingredients. To facilitate the mechanistic research and new drug discovery, we improved the target identification method based on a two-dimensional ligand similarity search module, which provides the confirmed and/or potential targets of each ingredient, as well as their binding activities. Importantly, five TCM formulas/Chinese patent drugs/herbs/ingredients with the highest Jaccard similarity scores to the submitted drugs are offered in ETCM v2.0, which may be of significance to identify prescriptions/herbs/ingredients with similar clinical efficacy, to summarize the rules of prescription use, and to find alternative drugs for endangered Chinese medicinal materials. Moreover, ETCM v2.0 provides an enhanced JavaScript-based network visualization tool for creating, modifying and exploring multi-scale biological networks. ETCM v2.0 may be a major data warehouse for the quality marker identification of TCMs, the TCM-derived drug discovery and repurposing, and the pharmacological mechanism investigation of TCMs against various human diseases.

6.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3623-3632, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37474995

RESUMEN

In the present study, the contents of seven active components [genipinic acid(GA), protocatechuic acid(PCA), neochlorogenic acid(NCA), chlorogenic acid(CA), cryptochlorogenic acid(CCA),(+)-pinoresinol di-O-ß-D-glucopyranosid(PDG), and(+)-pinoresinol 4'-O-ß-D-glucopyranoside(PG)] of Eucommiae Cortex in aortic vascular endothelial cells of spontaneously hypertensive rats(SHR) were simultaneously determined by ultra-high liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS). The qualified SHR models were selected. The primary aortic endothelial cells(VECs) of rats were separated and cultured by ligation and adherence, followed by subculture. After successful identification, an UPLC-MS/MS method for simultaneously determining the contents of GA, PCA, NCA, CA, CCA, PDG, PG in seven components of Eucommiae Cortex in VECs was established, including specificity, linearity, matrix effect, recovery, accuracy, precision and stability. The established method had the lo-west limit of quantification of 0.97-4.95 µg·L~(-1), accuracy of 87.26%-109.6%, extraction recovery of 89.23%-105.3%, matrix effect of 85.86%-106.2%, and stability of 86.00%-112.5%. Therefore, the established accurate UPLC-MS/MS method could rapidly and simultaneously determine the contents of the seven active components of Eucommiae Cortex in VECs of SHRs, which provided a refe-rence for the study of cellular pharmacokinetics of active components of Eucommiae Cortex extract.


Asunto(s)
Células Endoteliales , Espectrometría de Masas en Tándem , Ratas , Animales , Ratas Endogámicas SHR , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos
7.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445714

RESUMEN

Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.


Asunto(s)
Infecciones Bacterianas , Infecciones por Escherichia coli , Infecciones Urinarias , Sistema Urinario , Escherichia coli Uropatógena , Humanos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico
8.
ACS Nano ; 17(10): 9090-9109, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37172004

RESUMEN

Atherosclerosis (AS) is a systemic disease characterized by lipid deposition in the blood vessel wall that urgently requires effective and safe therapeutic drugs for long-term treatment. An essential oil monomer-1,8-cineole (CIN) with ameliorative effects on vascular injuries has considerable potential for preventing the progression of AS because of its antioxidant, anti-inflammation, and cholesterol regulatory effects. However, the high volatility and instability of CIN result in low oral bioavailability and a short half-life, thereby limiting its clinical application. We formulated a nanoemulsion using a polysaccharide-protein/protein complex (dextran-bovine serum albumin/protamine, DEX5k-BSA/PTM) as an emulsifier, with vitamin B12 (VB12) as the ligand to facilitate the transportation across the small intestine. An emulsion preparation method using a microjet followed by ultraviolet irradiation was developed to obtain the CIN-loaded oral nanoemulsion CIN@DEX5k-BSA/PTM/VB12. The nanoemulsion improved the stability of CIN both in vitro and in vivo, prolonged the retention time in the gastrointestinal tract (GIT), and enhanced the permeability across the mucus layer and intestinal epithelial cells to increase oral bioavailability and plaque accumulation of CIN. Validated in an AS mouse model, CIN@DEX5k-BSA/PTM/VB12 achieved prominent therapeutic efficacy combating AS. This study highlights the advantages of DEX5k-BSA/PTM and VB12 in the development of nanoemulsions for CIN and provides a promising oral nanoplatform for the delivery of essential oils.


Asunto(s)
Aterosclerosis , Polisacáridos , Ratones , Animales , Eucaliptol , Preparaciones Farmacéuticas , Disponibilidad Biológica , Polisacáridos/uso terapéutico , Emulsiones , Administración Oral
9.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1568-1577, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005845

RESUMEN

A gas chromatography-triple quadrupole mass spectrometry(GC-MS) method was established for the simultaneous determination of eleven volatile components in Cinnamomi Oleum and the chemical pattern recognition was utilized to evaluate the quality of essential oil obtained from Cinnamomi Fructus medicinal materials in various habitats. The Cinnamomi Fructus medicinal materials were treated by water distillation, analyzed using GC-MS, and detected by selective ion monitoring(SIM), and the internal standards were used for quantification. The content results of Cinnamomi Oleum from various batches were analyzed by hierarchical clustering analysis(HCA), principal component analysis(PCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) for the statistic analysis. Eleven components showed good linear relationships within their respective concentration ranges(R~2>0.999 7), with average recoveries of 92.41%-102.1% and RSD of 1.2%-3.2%(n=6). The samples were classified into three categories by HCA and PCA, and 2-nonanone was screened as a marker of variability between batches in combination with OPLS-DA. This method is specific, sensitive, simple, and accurate, and the screened components can be utilized as a basis for the quality control of Cinnamomi Oleum.


Asunto(s)
Medicamentos Herbarios Chinos , Aceites Volátiles , Cromatografía de Gases y Espectrometría de Masas , Aceites de Plantas , Medicamentos Herbarios Chinos/análisis , Análisis por Conglomerados
10.
J Pharm Biomed Anal ; 223: 115128, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36327582

RESUMEN

Oleum Cinnamomi is the essential oil obtained from the herb Fructus Cinnamomi which is used by the Hmong people in traditional medicine for the treatment of various diseases. At present, there are a variety of marketed preparations with it as the main medicine on the market. Information regarding the in vivo process of it is lacking, which has become a bottleneck restricting its development and utilization. In view of this, a GC-MS SIM analysis method was established for the simultaneous determination of six main volatile components [eucalyptol, p-cymene, 4-carvomenthenol, 4-isopropyl-2-cyclohexenone, α-terpineol, and 2-(4-Methylphenyl)-propan-2-ol] in plasma and ten tissues of rats to study their pharmacokinetic and distribution characteristics in vivo. The pharmacokinetic results showed that the t1/2 of each index was 0.41-1.66 h, Tmax was 0.16-0.68 h, Cmax was 13.66-2015.02 ng/mL, AUC0-t was 12.84-4299.00 h·ng/mL, CLZ/F was 1750.93-107013.11 mL/h/kg. This meant that the six components could be absorbed quickly, had a short residence time, and be eliminated quickly in the body. Among them, eucalyptol has the highest degree of absorption and a larger amount of entering the body. Moreover, the Cmax and AUC0-t of the six components increased correspondingly with the increase of the dose, indicating that the concentration of Oleum Cinnamomi in the rat plasma was dose-dependent. At different time points, the six components were widely distributed with uneven characteristics in the body. The six components mainly tend to be distributed in stomach, small intestine, and liver, followed by kidney, spleen, heart, and brain, and to a lesser extent in lung, skin, and muscle. And the six components were eliminated quickly in each tissue. The pharmacokinetic process and tissue distribution characteristics of Oleum Cinnamomi were expounded in this study, which can provide scientific theory for the in-depth development and guidance of clinical drug use of Oleum Cinnamomi, and at the same time provide a medicinal material basis for the in-depth development and utilization of Oleum Cinnamomi.


Asunto(s)
Medicamentos Herbarios Chinos , Aceites Volátiles , Animales , Ratas , Aceites Volátiles/farmacocinética , Cromatografía de Gases y Espectrometría de Masas/métodos , Distribución Tisular , Eucaliptol , Aceites de Plantas , Medicamentos Herbarios Chinos/farmacocinética
11.
Molecules ; 27(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557779

RESUMEN

Sinomenine is the main component of the vine Sinomenium acutum. It was first isolated in the early 1920s and has since attracted special interest as a potential anti-rheumatoid arthritis (RA) agent, owing to its successful application in traditional Chinese medicine for the treatment of neuralgia and rheumatoid diseases. In the past few decades, significant advances have broadened our understanding of the molecular mechanisms through which sinomenine treats RA, as well as the structural modifications necessary for improved pharmacological activity. In this review, we summarize up-to-date reports on the pharmacological properties of sinomenine in RA treatment, document their underlying mechanisms, and provide an overview of promising sinomenine derivatives as potential RA drug therapies.


Asunto(s)
Artritis Reumatoide , Morfinanos , Neuralgia , Humanos , Artritis Reumatoide/tratamiento farmacológico , Morfinanos/uso terapéutico , Morfinanos/farmacología , Medicina Tradicional China , Neuralgia/tratamiento farmacológico
12.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5617-5626, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471980

RESUMEN

Laportea bulbifera extract is effective in resisting inflammation and shows a good therapeutic effect on rheumatoid arthritis in rats. However, the absorption characteristics of active components in L. bulbifera extract in Caco-2 cells are still unclear, which limits the in-depth development of L. bulbifera resources. The purpose of this study was to investigate the absorption and transport mechanism of the active components of L. bulbifera extract in the Caco-2 cell model and explore the effects of different factors(concentration, time, pH value, temperature, and efflux transporter inhibitor) on its uptake and transport. The results showed that L. bulbifera extract at the concentration of 2.0-8.0 mg·mL~(-1) showed no toxicity to Caco-2 cells. The uptake and transport of L. bulbifera extract in the Caco-2 cell model were concentration-dependent and time-dependent. The main absorption mechanism was passive diffusion, and acidic condition(pH 5.0-6.0) and 37 ℃ were more favorable for drug absorption. P_(app)>1.0×10~(-6 )cm·s~(-1) of each component indicated that L. bulbifera was a moderately absorbed drug. P-gp, MRP2, and BCRP were not involved in its uptake and transport.


Asunto(s)
Absorción Intestinal , Urticaceae , Humanos , Ratas , Animales , Células CACO-2 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias/metabolismo , Transporte Biológico , Extractos Vegetales/farmacología
13.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234930

RESUMEN

Oleum Cinnamomi is a traditional medicine used by the Hmong, the essential oil obtained from Fructus Cinnamomi, for the treatment of coronary heart disease. Information regarding the efficient quality control markers of it is lacking, which has become a bottleneck restricting its development and utilization. Here, an integrated qualitative analysis approach based on a GC-MS and network pharmacology strategy was applied to explore quality control markers for the assessment of Oleum Cinnamomi. Firstly, the compounds of Oleum Cinnamomi were detected by GC-MS. In total, 57 chemical components were identified, mainly monoterpenes and sesquiterpenes, accounting for 83.05% of total essential oil components. Secondly, network pharmacology was adopted to explore the compounds linked to target genes of coronary heart disease. Fifty-two compounds were found, indicating the effectiveness of Oleum Cinnamomi in the treatment of coronary heart disease. Among them, 10 compounds, including eucalyptol, were chosen as potential effective compounds in Oleum Cinnamomi. Thirdly, an established GC-MS SIM method was validated and applied for the simultaneous determination of the contents of these 10 compounds using 20 sample batches of Oleum Cinnamomi. It was preliminarily found that the contents of these 10 compounds differed in Oleum Cinnamomi from different origins. Finally, quantitative analyte data were analyzed using multivariate statistical analysis to determine Oleum Cinnamomi quality. Four compounds (eucalyptol, p-cymene, sabinene, ß-pinene) were identified as chemical markers for quality control. Accordingly, this study provides new strategies to explore the quality control markers and develops a novel method for the quality assessment of Oleum Cinnamomi.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Aceites Volátiles , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Eucaliptol , Humanos , Monoterpenos , Farmacología en Red , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas , Control de Calidad
14.
Artículo en Inglés | MEDLINE | ID: mdl-36285162

RESUMEN

The aim of this study was to explore the mechanisms underlying the differences in the pharmacokinetics of Huangqi Liuyi decoction extract (HQD) under physiological and pathological conditions. The roles of liver cytochrome P450 metabolic enzymes (Cyp450) and small intestinal transporters were also investigated. The cocktail probe drug method was used to investigate the effects of diabetic nephropathy (DN) and HQD on metabolic enzyme activity. The expression levels of liver Cyp450 metabolic enzymes (Cyp1A2, Cyp2C37, Cyp3A11, Cyp2E1, and Cyp2C11) and small intestinal transporters (breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), organic cation transporters (OCTs), and multidrug resistance-associated protein (MRPs) were determined using western blot. Compared to normal mice, the expression of OCT1, OCT2, MRP1, and MRP2 was increased in DN mice, while that of P-gp and BCRP (P < 0.05 and P < 0.001) was inhibited. HQD inhibited expression of Cyp1A2 and Cyp3A11 and increased the expression of P-gp and BCRP in normal mice. In DN mice, HQD induced expression of BCRP and inhibited expression of Cyp2C37, Cyp3A11, OCT2, MRP1, and MRP2. The activity of each Cyp450 enzyme was consistent with changes in expression. The changes in pharmacokinetic parameters of HQD in DN might, in part, be secondary to decreased expression of P-gp and BCRP. HQD varied in regulating transporter activities between health and disease. These findings support careful application of HQD-based treatment in DN, especially in combination with other drugs.

15.
Molecules ; 27(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36144821

RESUMEN

Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-ß-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, metabolism or pharmacokinetics of PTD has not been reported. Therefore, this research to study the anti-inflammatory activity of PTD was investigated via the LPS-induced RAW264.7 cells model. At the same time, we also used the UHPLC/Q Exactive Plus MS and UPLC-MS/MS methods to study the metabolites and pharmacokinetics of PTD, to calculate its bioavailability for the first time. The results showed that PTD could downregulate secretion of the pro-inflammatory cytokines. In the metabolic study, four metabolites were identified, and the primary degradative pathways in vivo involved the desaturation, oxidation, methylation, alkylation, dehydration, degradation and desugarization. In the pharmacokinetic study, PTD and its main metabolite protosappanin B (PTB) were measured after oral and intravenous administration. After oral administration of PTD, its Tmax was 0.49 h, t1/2z and MRT(0-t) were 3.47 ± 0.78 h and 3.06 ± 0.63 h, respectively. It shows that PTD was quickly absorbed into plasma and it may be eliminated quickly in the body, and its bioavailability is about 0.65%.


Asunto(s)
Caesalpinia , Espectrometría de Masas en Tándem , Administración Oral , Caesalpinia/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Citocinas , Glucósidos/metabolismo , Lipopolisacáridos/farmacología , Oxocinas , Extractos Vegetales/farmacocinética , Espectrometría de Masas en Tándem/métodos
16.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4755-4764, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164883

RESUMEN

The present study investigated the pharmacodynamic material basis of Laportea bulbifera in the treatment of rheumatoid arthritis. Firstly, human rheumatoid arthritis fibroblast-like synoviocyte line MH7A was cultured in vitro and treated with tumor necrosis factor alpha(TNF-α, 50 ng·mL~(-1)). The proliferation and the levels of inflammatory cytokines such as prostaglandin E2(PGE2), interleukin-1ß(IL-1ß), and interleukin-6(IL-6) of the MH7A cells exposed to the serum containing L. bulbifera were determined to evaluate the anti-rheumatoid arthritis effects of the serum. Furthermore, the ultra-performance liquid chromatography tandem mass spectrometry fingerprints of the L. bulbifera crude extract, the drug-containing serum, and the drug-free serum were compared to identify the compounds newly generated in the serum after oral administration of the extract. According to the peak areas of common peaks and the results of anti-rheumatoid arthritis effect test, the active components were identified. The serum containing L. bulbifera significantly inhibited the proliferation of the MH7A cells activated by TNF-α and the expression of PGE2, IL-6, and IL-1ß. Thirty newly generated compounds were detected in the drug-containing serum. Among them, neochlorogenic acid, cryptochlorogenic acid, chlorogenic acid, rutin, isoquercitrin, luteoloside, kaempferol-3-O-rutinoside, and quercitrin were also present in the crude extract. Twelve characteristic peaks(3, 7, 8, 14, 18, 19, 21, 23, 24, m6, m7, and m15) were significantly correlated with the pharmaceutical effect. According to the correlations, neochlorogenic acid, cryptochlorogenic acid, and chlorogenic acid had great contributions to the anti-rheumatoid arthritis activity. This study preliminarily clarified the potential pharmacodynamic substances of L. bulbifera in the treatment of rheumatoid arthritis, which laid a theoretical and experimental foundation for further development and application of the medicinal plant.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Urticaceae , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Ácido Clorogénico/análogos & derivados , Citocinas/metabolismo , Dinoprostona , Humanos , Interleucina-1beta/genética , Interleucina-6 , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ácido Quínico/análogos & derivados , Rutina , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Urticaceae/química
17.
J Sep Sci ; 45(22): 4023-4038, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36070105

RESUMEN

Gerberae Piloselloidis Herba, a traditional Chinese medicine, is often employed to treat such lung-related diseases as coughs, asthma, and pulmonary carbuncles in southwest China. Our previous study demonstrated that its active fraction, prepared from Gerberae Piloselloidis Herba, exerts an obvious beneficial effect on asthma. However, the pharmacokinetics of its major constituents remain unclear. Therefore, an ultra-performance mass spectrometry-electrospray ionization-tandem mass spectrometry method was successfully established to simultaneously perform the pharmacokinetics of the main 11 components of the active fraction between normal and ovalbumin-induced asthmatic mice. Compared to the normal group, in asthmatic mice the peak concentration of arbutin, marmesin, caffeoylquinic acids, and flavonoid glycosides clearly increased, while for luteolin it significantly declined; the area under the curve for arbutin and luteolin showed an increase, but the values of marmesin, caffeoylquinic acids, and flavonoid glycosides revealed a decline; the peak time for arbutin, caffeoylquinic acids and flavonoid glycosides decreased, while for marmesin and luteolin it significantly augmented; apart from marmesin, the half-life for all compounds shortened significantly. It is indicated that the pathology of asthma could lead to an alteration in the pharmacokinetic profiles of the 11 components in plasma, providing a reference for further exploration of the pharmacodynamic basis of the anti-bronchial effect of Gerberae Piloselloidis Herba.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Ratones , Animales , Arbutina , Luteolina , Glicósidos , Flavonoides , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacocinética , Administración Oral , Asma/tratamiento farmacológico , Cromatografía Líquida de Alta Presión/métodos
18.
Front Pharmacol ; 13: 948678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873589

RESUMEN

The Wuji pill, also called Wuji Wan (WJW), is an effective traditional medicine for the clinical treatment of irritable bowel syndrome (IBS). It is principally composed of Rhizoma Coptidis, Fructus Evodiae Rutaecarpae, and Radix Paeoniae Alba. There have been no reports on the pharmacokinetics of WJW on IBS. Because it is more meaningful to study pharmacokinetics in relation to specific pathological conditions, our study investigated the pharmacokinetic differences of five representative components (berberine, palmatine, evodiamine, rutaecarpine, and paeoniflorin) in normal rats and chronic visceral hypersensitivity IBS (CVH-IBS) model rats after single dose and multiple doses of WJW using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Transmission electron microscopy, immunohistochemistry, and immunofluorescence were used to explore mechanisms behind the pharmacokinetic differences in terms of tight junction proteins (Occludin and ZO-1), myosin light chain kinase (MLCK), and transporters including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and multidrug resistance associated protein 2 (MRP2) in rat colons. After a single dose, for all components except rutaecarpine, significant differences were observed between normal and model groups. Compared with normal group, T1/2 and AUC0-t of berberine and palmatine in model group increased significantly (562.5 ± 237.2 vs. 1,384.9 ± 712.4 min, 733.8 ± 67.4 vs. 1,532.4 ± 612.7 min; 5,443.0 ± 1,405.8 vs. 9,930.8 ± 2,304.5 min·ng/ml, 2,365.5 ± 410.6 vs. 3,527.0 ± 717.8 min·ng/ml), while Cl/F decreased (840.7 ± 250.8 vs. 397.3 ± 142.7 L/h/kg, 427.7 ± 89.4 vs. 288.9 ± 114.4 L/h/kg). Cmax and AUC0-t of evodiamine in model group increased significantly (1.4 ± 0.6 vs. 2.4 ± 0.7 ng/ml; 573 ± 45.3 vs. 733.9 ± 160.2 min·ng/ml), while T1/2, Tmax, Cl/F, and Vd/F had no significant difference. Tmax and AUC0-t of paeoniflorin in model group increased significantly (21.0 ± 8.2 vs. 80.0 ± 45.8 min; 15,428.9 ± 5,063.6 vs. 33,140.6 ± 5,613.9 min·ng/ml), while Cl/F decreased (110.5 ± 48.1 vs. 43.3 ± 9.5 L/h/kg). However, after multiple doses, all five components showed significant differences between normal and model groups. Moreover, these differences were related to tight junction damage and the differential expression of transporters in the colon, suggesting that dose adjustment might be required during administration of WJW in the clinical treatment of IBS.

19.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3629-3636, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-35850817

RESUMEN

To identify the pharmacodynamic material basis of root bark of Caesalpinia decapetala extract and clarify the dynamic changes and distribution characteristics of the compounds in vivo.UPLC-MS/MS was used for simultaneous determination of 3-deoxysappanchalcone, isoliquiritigenin, protosappanin B, and protosappanin B-10-O-ß-D-glucoside in plasma, heart, liver, spleen, lung, kidney, stomach and duodenum of rats, to further study the pharmacokinetics and tissue distribution of root bark of C.decapetala extract in rats.Statistical analysis of obtained data demonstrated that the established analytical methods of the four components in biological matrix met the requirements of biological sample determination.The pharmacokinetic parameters showed that the t_(1/2 z), T_(max), C_(max), AUC_(0-t), MRT_(0-t), and CL_(z/F) of each component were 4.57-13.47 h, 0.22-0.51 h, 27.60-6 418.38 µg·L~(-1), 112.45-11 824.25 h·µg·L~(-1), 3.89-9.01 h, and 9.85-96.87 L·h~(-1)·kg~(-1), respectively.The results of tissue distribution revealed that at different time points, the components were widely but unevenly distributed in the body.Specifically, they were more distributed in the stomach and duodenum, followed by liver, spleen, lung, and kidney, and the least distribution was observed in the heart.


Asunto(s)
Caesalpinia , Medicamentos Herbarios Chinos , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/análisis , Corteza de la Planta/química , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos , Distribución Tisular
20.
Molecules ; 27(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807271

RESUMEN

Jin-Gu-Lian (JGL) is traditionally used by Miao for the treatment of rheumatism arthralgia. At the same time, the combination of Sargentodoxa cuneata (Oliv.) Rehd. et W (SC) and Alangium chinense (Lour.) Harms (AC), the core drug pair (CDP) in the formula of JGL, is used at high frequencies in many Miao medicine prescriptions for rheumatic diseases. However, previous research lacks the pharmacokinetic study of JGL, and study on the compatibility of its CDP with other medicinal herbs in the formula is needed. This study aims to establish a simple, rapid, and sensitive Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) method for the simultaneous determination of four main bioactive components of JGL in rat plasma, including Salidroside (Sal), Anabasine (Ana), Chlorogenic Acid (CA), and Protocatechuic Acid (PCA), and compare the pharmacokinetic properties of two groups of rats after being orally administrated with JGL and its CDP extracts, respectively. The results showed that area under the plasma concentration-time curve (AUC), mean retention time (MRT), and clearance rate (CL), of Sal, Ana, CA and PCA in the two groups of rats were changed in different degrees. The CDP combined with other drugs could significantly increase the absorption of Sal and Ana, prolong its retention time in vivo, and may accelerate the absorption rate of CA and PCA. This indicated that the combination of CDP and other herbs may affect the pharmacokinetics process of active components in vivo, increase the exposure and bioavailability of compounds in the JGL group, and prolong the retention time, which may be the reason why JGL has a better inhibitory effect on inflammatory cytokines, providing a viable orientation for the compatibility investigation of herb medicines.


Asunto(s)
Alangiaceae , Medicamentos Herbarios Chinos , Melia azedarach , Plantas Medicinales , Animales , Ratas , Administración Oral , Ácido Clorogénico , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/análisis , Prescripciones , Ranunculales , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA