RESUMEN
New neurons are generated in the postnatal rodent hypothalamus, with a subset of tanycytes in the third ventricular (3V) wall serving as neural stem/progenitor cells. However, the precise stem cell niche organization, the intermediate steps and the endogenous regulators of postnatal hypothalamic neurogenesis remain elusive. Quantitative lineage-tracing in vivo revealed that conditional deletion of fibroblast growth factor 10 (Fgf10) from Fgf10-expressing ß-tanycytes at postnatal days (P)4-5 results in the generation of significantly more parenchymal cells by P28, composed mostly of ventromedial and dorsomedial neurons and some glial cells, which persist into adulthood. A closer scrutiny in vivo and ex vivo revealed that the 3V wall is not static and is amenable to cell movements. Furthermore, normally ß-tanycytes give rise to parenchymal cells via an intermediate population of α-tanycytes with transient amplifying cell characteristics. Loss of Fgf10 temporarily attenuates the amplification of ß-tanycytes but also appears to delay the exit of their α-tanycyte descendants from the germinal 3V wall. Our findings suggest that transience of cells through the α-tanycyte domain is a key feature, and Fgf10 is a negative regulator of postnatal hypothalamic neurogenesis.
Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Neurogénesis/fisiología , Animales , Movimiento Celular/fisiología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismoRESUMEN
The mammalian hypothalamus regulates key homeostatic and neuroendocrine functions ranging from circadian rhythm and energy balance to growth and reproductive cycles via the hypothalamic-pituitary and hypothalamic-thyroid axes. In addition to its neurones, tanycytes are taking centre stage in the short- and long-term augmentation and integration of diverse hypothalamic functions, although the genetic regulators and mediators of their involvement are poorly understood. Exogenous interventions have implicated fibroblast growth factor (FGF) signalling, although the focal point of the action of FGF and any role for putative endogenous players also remains elusive. We carried out a comprehensive high-resolution screen of FGF signalling pathway mediators and modifiers using a combination of in situ hybridisation, immunolabelling and transgenic reporter mice, aiming to map their spatial distribution in the adult hypothalamus. Our findings suggest that ß-tanycytes are the likely focal point of exogenous and endogenous action of FGF in the third ventricular wall, utilising FGF receptor (FGFR)1 and FGFR2 IIIc isoforms, but not FGFR3. Key IIIc-activating endogenous ligands include FGF1, 2, 9 and 18, which are expressed by a subset of ependymal and parenchymal cells. In the parenchymal compartment, FGFR1-3 show divergent patterns, with FGFR1 being predominant in neuronal nuclei and expression of FGFR3 being associated with glial cell function. Intracrine FGFs are also present, suggestive of multiple modes of FGF function. Our findings provide a testable framework for understanding the complex role of FGFs with respect to regulating the metabolic endocrine and neurogenic functions of hypothalamus in vivo.
Asunto(s)
Regulación del Apetito/genética , Metabolismo Energético/genética , Células Ependimogliales/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Hipotálamo/citología , Animales , Regulación del Apetito/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genéticaRESUMEN
Increasing evidence suggests that neurogenesis occurs in the postnatal and adult mammalian hypothalamus. However, the identity and location of the putative progenitor cells is under much debate, and little is known about the dynamics of neurogenesis in unchallenged brain. Previously, we postulated that Fibroblast growth factor 10-expressing (Fgf10(+)) tanycytes constitute a population of progenitor cells in the mouse hypothalamus. Here, we show that Fgf10(+) tanycytes express markers of neural stem/progenitor cells, divide late into postnatal life, and can generate both neurons and astrocytes in vivo. Stage-specific lineage-tracing of Fgf10(+) tanycytes using Fgf10-creERT2 mice, reveals robust neurogenesis at postnatal day 28 (P28), lasting as late as P60. Furthermore, we present evidence for amplification of Fgf10-lineage traced neural cells within the hypothalamic parenchyma itself. The neuronal descendants of Fgf10(+) tanycytes predominantly populate the arcuate nucleus, a subset of which express the orexigenic neuronal marker, Neuropeptide-Y, and respond to fasting and leptin-induced signaling. These studies provide direct evidence in support of hypothalamic neurogenesis during late postnatal and adult life, and identify Fgf10(+) tanycytes as a source of parenchymal neurons with putative roles in appetite and energy balance.
Asunto(s)
Apetito/fisiología , Citosol/metabolismo , Metabolismo Energético/fisiología , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Neurogénesis/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Apetito/efectos de los fármacos , Proteínas Bacterianas/genética , Bromodesoxiuridina , Metabolismo Energético/efectos de los fármacos , Antagonistas de Estrógenos/farmacología , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Privación de Alimentos/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Compuestos de Fenilurea/administración & dosificación , Proteínas/genética , ARN no Traducido , Tamoxifeno/farmacología , beta-Galactosidasa/metabolismoRESUMEN
In seasonal mammals, growth, energy balance, and reproductive status are regulated by the neuroendocrine effects of photoperiod. Thyroid hormone (TH) is a key player in this response in a number of species. A neuroendocrine role for the nutritional factor vitamin A has not been considered, although its metabolic product retinoic acid (RA) regulates transcription via the same nuclear receptor family as TH. We hypothesized that vitamin A/RA plays a role in the neuroendocrine hypothalamus alongside TH signaling. Using a reporter assay to measure RA activity, we demonstrate that RA activity levels in the hypothalamus of photoperiod-sensitive F344 rats are reduced in short-day relative to long-day conditions. These lower RA activity levels can be explained by reduced expression of a whole network of RA signaling genes in the ependymal cells around the third ventricle and in the arcuate nucleus of the hypothalamus. These include genes required for uptake (Ttr, Stra6, and Crbp1), synthesis (Raldh1), receptor response (RAR), and ligand clearance (Crapb1 and Cyp26B1). Using melatonin injections into long-day rats, we show that the probable trigger of the fall in RA is melatonin. Surprisingly we also found RPE65 expression in the mammalian hypothalamus for the first time. Similar to RA signaling genes, members of the Wnt/ß-catenin pathway and NMU and its receptor NMUR2 are also under photoperiodic control. Our data provide strong evidence for a novel endocrine axis, involving the nutrient vitamin A regulated by photoperiod and melatonin and suggest a role for several new players in the photoperiodic neuroendocrine response.
Asunto(s)
Fotoperiodo , Vitamina A/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Hipotálamo/fisiología , Masculino , Melatonina/farmacología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Ratas , Ratas Endogámicas F344 , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Proteínas Wnt/genética , beta Catenina/genéticaRESUMEN
Both retinoic acid (RA) and thyroid hormone (TH) regulate transcription via specific nuclear receptors. TH regulates hypothalamic homeostasis and active T3 is generated by deiodinase enzymes in tanycytes surrounding the third ventricle. However, RA has not been previously considered in such a role. Data presented here highlights novel parallels between the TH and RA synthetic pathways in the hypothalamus implying that RA also acts to regulate hypothalamic gene expression and function. Key elements of the RA cellular signaling pathway were shown to be regulated in the rodent hypothalamus. Retinoid synthetic enzymes and the retinol transport protein Stra6 were located in the cells lining the third ventricle allowing synthesis of RA from retinol present in the CNS to act via RA receptors and retinoid X receptors in the hypothalamus. Photoperiod manipulation was shown to alter the expression of synthetic enzymes and receptors with lengthening of photoperiod leading to enhanced RA signaling. In vitro RA can regulate the hypothalamic neuroendocrine peptide adrenocorticotrophic hormone. This work presents the new concept of controlled RA synthesis by hypothalamic tanycytes giving rise to possible involvement of this system in endocrine, and possibly vitamin A, homeostasis.