Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 2): 130605, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447827

RESUMEN

Gold nanoparticles (AuNPs) have been reported to modulate bone tissue regeneration and are being extensively utilized in biomedical implementations attributable to their low cytotoxicity, biocompatibility and simplicity of functionalization. Lately, biologically synthesized nanoparticles have acquired popularity because of their environmentally acceptable alternatives for diverse applications. Here we report the green synthesis of AuNPs by taking the biopolymer Carboxymethyl Tamarind (CMT) as a unique reducing as well as a stabilizing agent. The synthesized CMT-AuNPs were analyzed by UV-vis spectrophotometer, DLS, FTIR, XRD, TGA, SEM and TEM. These results suggest that CMT-AuNPs possess an average size of 19.93 ± 8.52 nm and have long-term stability. Further, these CMT-AuNPs promote the proliferation together with the differentiation and mineralization of osteoblast cells in a "dose-dependent" manner. Additionally, CMT-AuNPs are non-toxic to SD rats when applied externally. We suggest that the CMT-AuNPs have the potential to be a suitable and non-toxic agent for differentiation and mineralization of osteoblast cells in vitro and this can be tested in vivo as well.


Asunto(s)
Nanopartículas del Metal , Tamarindus , Ratas , Animales , Oro/farmacología , Calcio , Biomineralización , Ratas Sprague-Dawley , Extractos Vegetales
2.
Life Sci ; 331: 122032, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37604353

RESUMEN

Menthol is a small bioactive compound able to cause several physiological changes and has multiple molecular targets. Therefore, cellular response against menthol is complex, and still poorly understood. In this work, we used a human osteosarcoma cell line (Saos-2) and analysed the effect of menthol, especially in terms of cellular, subcellular and molecular aspects. We demonstrate that menthol causes increased mitochondrial Ca2+ in a complex manner, which is mainly contributed by intracellular sources, including ER. Menthol also changes the Ca2+-load of individual mitochondrial particles in different conditions. Menthol increases ER-mito contact points, causes mitochondrial morphological changes, and increases mitochondrial ATP, cardiolipin, mitochondrial ROS and reduces mitochondrial membrane potential (ΔΨm). Menthol also prevents the mitochondrial quality damaged by sub-lethal and lethal doses of CCCP. In addition, menthol lowers the mitochondrial temperature within cell and also serves as a cooling agent for the isolated mitochondria in a cell free system too. Notably, menthol-induced reduction of mitochondrial temperature is observed in diverse types of cells, including neuronal, immune and cancer cells. As the higher mitochondrial temperature is a hallmark of several inflammatory, metabolic, disease and age-related disorders, we propose that menthol can serve as an active anti-aging compound against all these disorders. These findings may have relevance in case of several pharmacological and clinical applications of menthol. SIGNIFICANCE STATEMENT: Menthol is a plant-derived bioactive compound that is widely used for several physiological, behavioural, addictive, and medicinal purposes. It is a well-established "cooling and analgesic agent". However, the exact cellular and sub-cellular responses of menthol is poorly understood. In this work, we have characterized the effects of menthol on mitochondrial metabolism. Menthol regulates mitochondrial Ca2+, ATP, superoxides, cardiolipin, membrane-potential, and ER-mito contact sites. Moreover, the cooling agent menthol also cools down mitochondria and protects mitochondrial damage by certain toxins. These findings may promote use of menthol as a useful supplementary agent for anti-aging, anti-cancer, anti-inflammatory purposes where higher mitochondrial temperature is prevalent.


Asunto(s)
Cardiolipinas , Mentol , Humanos , Mentol/farmacología , Mentol/metabolismo , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Relación Estructura-Actividad , Adenosina Trifosfato/metabolismo , Calcio/metabolismo
3.
Mater Sci Eng C Mater Biol Appl ; 118: 111348, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254970

RESUMEN

In this work, sodium alginate (SA) based "all-natural" composite bio-sponges were designed for potential application as wound care scaffold. The composite bio-sponges were developed from the aqueous amalgamation of SA and cellulose nanofibres (CNFs) in bio-extracts like Rice water (Rw) and Giloy extract (Ge). These sponges were modified by employing a simple coating strategy using vegetable oil-based bio-polyurethane (BioPU) to tailor their physicochemical and biological properties so as to match the specific requirements of a wound care scaffold. Bio-sponges with shared interpenetrating polymeric network structures were attained at optimized BioPU coating formulation. The interpenetration of BioPU chains within the sponge construct resulted in the formation of numerous micro-networks in the interconnected microporous structure of sponges (porosity ≥75%). The coated sponge showed a superior mechanical strength (compressive strength ~3.8 MPa, compressive modulus ~35 MPa) with appreciable flexibility and recoverability under repeated compressive loading-unloading cycles. A tunable degradation behaviour was achieved by varying BioPU coating concentrations owing to the different degree of polymer chain entanglement within the sponge construct. The physical entanglement of BioPU chains with core structural components of sponge improved their structural stability by suppressing their full fragmentation in water-based medium without affecting its swelling behaviour (swelling ratio > 1000%). The coated sponge surface has provided a suitable moist-adherent physical environment to support the adhesion and growth of skin cells (HaCaT cells). The MTT (3-(4,5-dimethyl thiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and hemolytic assay revealed the non-toxic and biocompatible nature of coated sponges in vitro. Moreover, no signs of skin erythema or edema were observed during in vivo dermal irritation and corrosion test performed on the skin of Sprague Dawley (SD) rats. Our initial observations revealed the credibility of these sponges as functional wound care scaffolds as well as its diverse potential as a suitable substrate for various tissue engineering applications.


Asunto(s)
Alginatos , Nanofibras , Animales , Celulosa , Extractos Vegetales , Poliuretanos , Porosidad , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos , Andamios del Tejido
4.
Sci Rep ; 8(1): 1931, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386578

RESUMEN

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Asunto(s)
Agricultura , Escarabajos/genética , Genoma de los Insectos , Genómica , Solanum tuberosum/parasitología , Animales , Elementos Transponibles de ADN/genética , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Variación Genética , Genética de Población , Interacciones Huésped-Parásitos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes , Control Biológico de Vectores , Filogenia , Interferencia de ARN , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA