Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bone ; 181: 117033, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307176

RESUMEN

Alkaline phosphatase (ALP) is detected in most human tissues. However, ALP activity is routinely assayed using high concentrations of artificial colorimetric substrates in phosphate-free laboratory buffers at lethal pH. Hypophosphatasia (HPP) is the inborn-error-of-metabolism caused by loss-of-function mutation(s) of the ALPL gene that encodes the ALP isoenzyme expressed in bone, liver, kidney, and elsewhere and is therefore designated "tissue-nonspecific" ALP (TNSALP). Consequently, HPP harbors clues concerning the biological function of this phosphohydrolase that is anchored onto the surface of cells. The biochemical signature of HPP features low serum ALP activity (hypophosphatasemia) together with elevated plasma levels of three natural substrates of TNSALP: i) phosphoethanolamine (PEA), a component of the linkage apparatus that binds ALPs and other proteins to the plasma membrane surface; ii) inorganic pyrophosphate (PPi), an inhibitor of bone and tooth mineralization; and iii) pyridoxal 5'-phosphate (PLP), the principal circulating vitameric form of vitamin B6 (B6). Autosomal dominant and autosomal recessive inheritance involving several hundred ALPL mutations underlies the remarkably broad-ranging expressivity of HPP featuring tooth loss often with muscle weakness and rickets or osteomalacia. Thus, HPP associates the "bone" isoform of TNSALP with biomineralization, whereas the physiological role of the "liver", "kidney", and other isoforms of TNSALP remains uncertain. Herein, to examine HPP's broad-ranging severity and the function of TNSALP, we administered an oral challenge of pyridoxine (PN) hydrochloride to 116 children with HPP. We assayed both pre- and post-challenge serum ALP activity and plasma levels of PLP, the B6 degradation product pyridoxic acid (PA), and the B6 vitamer pyridoxal (PL) that can enter cells. Responses were validated by PN challenge of 14 healthy adults and 19 children with metabolic bone diseases other than HPP. HPP severity was assessed using our HPP clinical nosology and patient height Z-scores. PN challenge of all study groups did not alter serum ALP activity in our clinical laboratory. In HPP, both the post-challenge PLP level and the PLP increment correlated (Ps < 0.0001) with the clinical nosology and height Z-scores (Rs = +0.6009 and + 0.4886, and Rs = -0.4846 and - 0.5002, respectively). In contrast, the plasma levels and increments of PA and PL from the PN challenge became less pronounced with HPP severity. We discuss how our findings suggest extraskeletal TNSALP primarily conditioned the PN challenge responses, and explain why they caution against overzealous B6 supplementation of HPP.


Asunto(s)
Hipofosfatasia , Adulto , Humanos , Niño , Hipofosfatasia/genética , Fosfatasa Alcalina/metabolismo , Piridoxina , Vitamina B 6 , Piridoxal , Vitaminas
2.
J Pediatr Orthop ; 43(6): 379-385, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36952253

RESUMEN

PURPOSE: Patients with X-linked hypophosphatemic rickets (XLH) often develop coronal plane knee deformities despite medical treatment. Hemiepiphysiodesis is an effective way to correct coronal plane knee deformities in skeletally immature patients, but a full understanding of the rate of angular correction after hemiepiphysiodesis in XLH patients, compared with idiopathic cases is lacking. METHODS: We retrospectively reviewed charts of 24 XLH patients and 37 control patients without metabolic bone disease who underwent hemiepiphysiodesis. All patients were treated with standard-of-care medical therapy (SOC=active vitamin D and phosphate salt supplementation) in our clinical research center and had a minimum of 2-year follow-up after hemiepiphysiodesis. Demographic data as well as complications, repeat procedures, or recurrence/overcorrection were recorded. Standing lower extremity radiographs were evaluated before the surgical intervention and at subsequent hardware removal or skeletal maturity, whichever came first. Mean axis deviation, knee zone, mechanical lateral distal femoral angle (mLDFA), and medial proximal tibial angle were measured on each radiograph. The rate of angular correction was calculated as the change in mLDFA and medial proximal tibial angle over the duration of treatment. RESULTS: The magnitude of the initial deformity of the distal femur was greater in XLH patients as compared with control for varus (XLH mLDFA 97.7 +/- 4.9 vs. Control mLDFA 92.0 +/- 2.0 degrees) and valgus (XLH mLDFA 78.7 +/- 6.2 vs. Controls mLDFA 83.6 +/- 3.2 degrees). The rate of correction was dependent on age. When correcting for age, XLH patients corrected femoral deformity at a 15% to 36% slower rate than control patients for the mLDFA (>3 y growth remaining XLH 0.71 +/- 0.46 vs. control 0.84 +/- 0.27 degrees/month, <3 y growth remaining XLH 0.37 +/- 0.33 vs. control 0.58 +/- 0.41 degrees/month). No significant differences were seen in the rate of proximal tibia correction. XLH patients were less likely to end treatment in zone 1 (55.0% XLH vs. 77.8% control). XLH patients had longer treatment times than controls (19.5 +/- 10.7 vs. 12.6 +/- 7.0 mu, P value <0.001), a higher average number of secondary procedures than controls (1.33 +/- 1.44 vs. 0.62 +/- 0.92 number of procedures), a higher rate of overcorrection than controls (29.2% vs. 5.4%), and a higher rate of subsequent corrective osteotomy than controls (37.5% vs. 8.1%). There was no significant difference in the rate of complications between groups (8.3% vs. 5.4%). CONCLUSIONS: Patients with XLH undergoing hemiepiphysiodesis have a 15% to 36% slower rate of femoral deformity correction that results in longer treatment times, a higher likelihood to undergo more secondary procedures, and a lower likelihood to reach neutral mechanical alignment. SIGNIFICANCE: This study provides important information to guide the timing and treatment of patients with XLH and coronal plane knee deformities. In addition, results from this study can be educational for families and patients with respect to anticipated treatment times, success rates of the procedure, complication rate, and likelihood of needing repeat procedures.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Humanos , Raquitismo Hipofosfatémico Familiar/cirugía , Estudios Retrospectivos , Tibia/cirugía , Extremidad Inferior , Fémur/cirugía , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/anomalías
3.
Bone ; 150: 116007, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34000433

RESUMEN

Pyridoxal 5'-phosphate (PLP), the principal circulating form of vitamin B6 (B6), is elevated in the plasma of individuals with hypophosphatasia (HPP). HPP is the inborn-error-of-metabolism caused by loss-of-function mutation(s) of ALPL, the gene that encodes the "tissue-nonspecific" isoenzyme of alkaline phosphatase (TNSALP). PLP accumulates extracellularly in HPP because it is a natural substrate of this cell-surface phosphomonoester phosphohydrolase. Even individuals mildly affected by HPP manifest this biochemical hallmark, which is used for diagnosis. Herein, an exclusively breast-fed newborn boy with life-threatening perinatal HPP had uniquely normal instead of markedly elevated plasma PLP levels before beginning asfotase alfa (AA) TNSALP-replacement therapy. These abnormal PLP levels were explained by B6 deficiency, confirmed by his low plasma level of 4-pyridoxic acid (PA), the B6 degradation product. His mother, a presumed carrier of one of his two ALPL missense mutations, had serum ALP activity of 50 U/L (Nl 40-130) while her plasma PLP level was 9 µg/L (Nl 5-50) and PA was 3 µg/L (Nl 3-30). Her dietary history and breast milk pyridoxal (PL) level indicated she too was B6 deficient. With B6 supplementation using a breast milk fortifier, the patient's plasma PA level corrected, while his PLP level remained in the normal range but now in keeping with AA treatment. Our experience reveals that elevated levels of PLP in the circulation in HPP require some degree of B6 sufficiency, and that anticipated increases in HPP can be negated by hypovitaminosis B6.


Asunto(s)
Hipofosfatasia , Fosfatasa Alcalina , Femenino , Humanos , Hipofosfatasia/tratamiento farmacológico , Hipofosfatasia/genética , Recién Nacido , Masculino , Fosfatos , Embarazo , Piridoxal , Vitamina B 6 , Vitaminas
4.
J Bone Miner Res ; 28(2): 419-30, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22972716

RESUMEN

Generalized arterial calcification (AC) of infancy (GACI) is an autosomal recessive disorder that features hydroxyapatite deposition within arterial elastic fibers. Untreated, approximately 85% of GACI patients die by 6 months of age from cardiac ischemia and congestive heart failure. The first-generation bisphosphonate etidronate (EHDP; ethane-1-hydroxy-1,1-diphosphonic acid, also known as 1-hydroxyethylidene-bisphosphonate) inhibits bone resorption and can mimic endogenous inorganic pyrophosphate by blocking mineralization. With EHDP therapy for GACI, AC may resolve without recurrence upon treatment cessation. Skeletal disease is not an early characteristic of GACI, but rickets can appear from acquired hypophosphatemia or prolonged EHDP therapy. We report a 7-year-old boy with GACI referred for profound, acquired, skeletal disease. AC was gone after 5 months of EHDP therapy during infancy, but GACI-related joint calcifications progressed. He was receiving EHDP, 200 mg/day orally, and had odynodysphagia, diffuse opioid-controlled pain, plagiocephaly, facial dysmorphism, joint calcifications, contractures, and was wheelchair bound. Biochemical parameters of mineral homeostasis were essentially normal. Serum osteocalcin was low and the brain isoform of creatine kinase and tartrate-resistant acid phosphatase 5b (TRAP-5b) were elevated as in osteopetrosis. Skeletal radiographic findings resembled pediatric hypophosphatasia with pancranial synostosis, long-bone bowing, widened physes, as well as metaphyseal osteosclerosis, cupping and fraying, and "tongues" of radiolucency. Radiographic features of osteopetrosis included osteosclerosis and femoral Erlenmeyer flask deformity. After stopping EHDP, he improved rapidly, including remarkable skeletal healing and decreased joint calcifications. Profound, but rapidly reversible, inhibition of skeletal mineralization with paradoxical calcifications near joints can occur in GACI from protracted EHDP therapy. Although EHDP treatment is lifesaving in GACI, surveillance for toxicity is crucial.


Asunto(s)
Enfermedades Óseas/inducido químicamente , Ácido Etidrónico/efectos adversos , Ácido Etidrónico/uso terapéutico , Calcificación Vascular/tratamiento farmacológico , Adulto , Enfermedades Óseas/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Radiografía , Calcificación Vascular/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA