Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 192(1): 10-17, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31197652

RESUMEN

The objective of the present study was to assess the levels of Se, as well as other essential and toxic trace elements in wheat grains and traditional Roti-bread from whole-grain flour in a seleniferous area of Punjab (India) using inductively-coupled plasma mass-spectrometry. Wheat grain and bread selenium levels originating from seleniferous areas exceeded the control values by a factor of more than 488 and 179, respectively. Se-rich wheat was also characterized by significantly increased Cu and Mn levels. Se-rich bread also contained significantly higher levels of Cr, Cu, I, Mn, and V. The level of Li and Sr was reduced in both Se-enriched wheat and bread samples. Roti bread from Se-enriched wheat was also characterized by elevated Al, Cd, and Ni, as well as reduced As and Hg content as compared to the respective control values. Se intake with Se-rich bread was estimated as more than 13,600% of RDA. Daily intake of Mn with both Se-unfortified and Se-fortified bread was 133% and 190% of RDA. Therefore, Se-rich bread from wheat cultivated on a seleniferous area of Punjab (India) may be considered as a potent source of selenium, although Se status should be monitored throughout dietary intervention.


Asunto(s)
Pan/análisis , Harina/análisis , Selenio/análisis , Triticum/crecimiento & desarrollo , India , Selenio/metabolismo
2.
Biol Trace Elem Res ; 184(2): 523-528, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29222648

RESUMEN

The primary objective of the present study was to assess the level of selenium and toxic trace elements in wheat, rice, maize, and mustard from seleniferous areas of Punjab, India. The content of selenium (Se) and toxic trace elements, including aluminum (Al), arsenic (As), cadmium (Cd), mercury (Hg), nickel (Ni), lead (Pb), and tin (Sn), in crop samples was assessed using inductively coupled plasma mass-spectrometry after microwave digestion of the samples. The obtained data demonstrate that cultivation of crops on seleniferous soils significantly increased Se level in wheat, mustard, rice, and maize by a factor of more than 590, 111, 85, and 64, respectively. The study also showed that Se exposure affected toxic metal content in crops. In particular, Se-rich wheat was characterized by a significant decrease in Al, As, Ni, Pb, and Sn levels. The level of As, Cd, Ni, Pb, and Sn was significantly decreased in Se-rich rice, whereas As content was increased. In turn, the decrease in Al, As, Cd, Ni, Pb, and Sn levels in Se-rich maize was associated with a significant elevation of Hg content. Finally, Se-rich mustard was characterized by a significant increase in Al, As, and Hg levels, while the content of Ni, Pb, and Sn was significantly lower than the control levels. These findings should be taken into account while developing the nutritional strategies for correction of Se status. At the same time, the exact mechanisms underlying the observed differences are to be estimated.


Asunto(s)
Productos Agrícolas/química , Compuestos de Selenio/análisis , Selenio/análisis , Oligoelementos/análisis , Productos Agrícolas/metabolismo , India , Planta de la Mostaza/química , Planta de la Mostaza/metabolismo , Oryza/química , Oryza/metabolismo , Selenio/metabolismo , Compuestos de Selenio/metabolismo , Suelo/química , Especificidad de la Especie , Triticum/química , Triticum/metabolismo , Zea mays/química , Zea mays/metabolismo
3.
Metab Brain Dis ; 32(1): 195-202, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27581303

RESUMEN

The objective of the study was to investigate hair trace elements content in children suffering from autism spectrum disorder (ASD). A total of 74 ASD children and 74 sex- and age-matched controls divided into two age groups (2-4 and 5-9 years) were investigated. Hair trace elements content was assessed using inductively coupled plasma mass spectrometry. A general cohort of ASD children was characterized by 29 %, 41 %, and 24 % lower hair levels of chromium (Cr), iodine (I), and vanadium (V), respectively, whereas the level of selenium (Se) exceeded the respective control values by 31 %. In ASD children aged 2-4 years hair Cr, I and V content was 68 %, 36 % and 41 % lower than in the controls. Older ASD children were characterized by 45 % increase in hair Se levels. In a general cohort of ASD children hair beryllium (Be) and tin (Sn) levels were 50 % and 34 % lower than the control values. In the first age group (2-4 years) of ASD children 34 %, 42 %, and 73 % lower levels of arsenic (As), boron (B), and Be were detected. In the second age group of ASD children only a nearly significant 25 % decrease in hair lead (Pb) was detected. Surprisingly, no significant group difference in hair mercury (Hg), zinc (Zn), and copper (Cu) content was detected. Generally, the results of the present study demonstrate that children with ASD are characterized by lower values in hair of not only essential but also toxic trace elements.


Asunto(s)
Trastorno del Espectro Autista , Cabello/química , Oligoelementos/análisis , Arsénico/análisis , Niño , Preescolar , Cromo/análisis , Cobre/análisis , Femenino , Humanos , Yodo/análisis , Masculino , Mercurio/análisis , Selenio/análisis , Estaño/análisis , Vanadio/análisis , Zinc/análisis
4.
J Trace Elem Med Biol ; 43: 9-14, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27707611

RESUMEN

The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease.


Asunto(s)
Trastorno Autístico/sangre , Electrólitos/sangre , Oligoelementos/sangre , Trastorno del Espectro Autista/sangre , Niño , Preescolar , Femenino , Humanos , Masculino , Selenio/sangre
5.
Environ Sci Pollut Res Int ; 24(6): 5576-5584, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28035605

RESUMEN

The objective of the investigation is comparative analysis of hair trace element content in workers of different departments of petrochemical plant. A total of 75 men working in office (engineers), and departments 1 (D1), 3 (D3), and 4 (D4) of the petrochemical plant, as well as occupationally non-exposed persons, were examined. Hair trace element levels were analyzed using inductively coupled plasma mass spectrometry. The office workers were characterized by the highest hair As, Hg, Sn, I, and Si content as compared to the workers of other departments, whereas the level of those elements did not differ significantly from the control values. It is notable that hair Be levels in all employees of petrochemical plant were significantly lower, whereas Se content was significantly higher than that in unexposed controls. Hair toxic trace element content in workers directly involved in industrial processes did not differ significantly or was lower than that in the control group. At the same time, the highest levels of essential trace elements (Cr, Fe, and I) were observed in employees working in primary oil refining (D1). Hair levels of Co, I, and Li were maximal in persons of sulfur and bitumen-producing division (D4). The lowest levels of both essential and toxic trace elements in hair were detected in employees involved in production of liquefied gas, kerosene, and diesel fuel (D3). The obtained data demonstrate that involvement in different technological processes in petrochemical complex differentially affect hair trace element content in workers.


Asunto(s)
Cabello , Mercurio , Exposición Profesional , Oligoelementos , Adulto , Industria Química , Humanos , Hidrocarburos , Masculino , Petróleo , Análisis Espectral , Azufre
6.
Biofactors ; 36(2): 125-35, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20333752

RESUMEN

There is increasing evidence that human pregnancy outcome can be significantly compromised by suboptimal maternal nutritional status. Poor diet results in a maternal-fetal environment in which the teratogenicity of other insults such as alcohol might be amplified. As an example, there is evidence that zinc (Zn) can interact with maternal alcohol exposure to influence the risk for fetal alcohol spectrum disorders (FASD). Studies with experimental animals have shown that the teratogenicity of alcohol is increased under conditions of Zn deficiency, whereas its teratogenicity is lessened when animals are given Zn-supplemented diets or Zn injections before the alcohol exposure. Alcohol can precipitate an acute-phase response, resulting in a subsequent increase in maternal liver metallothionein, which can sequester Zn and lead to decreased Zn transfer to the fetus. Importantly, the teratogenicity of acute alcohol exposure is reduced in metallothionein knockout mice, which can have improved Zn transfer to the conceptus relative to wild-type mice. Consistent with the above, Zn status has been reported to be low in alcoholic women at delivery. Preliminary data from two basic science and clinical nutritional studies that are ongoing as part of the international Collaborative Initiative on Fetal Alcohol Spectrum Disorders support the potential role of Zn, among other nutritional factors, relative to risk for FASD. Importantly, the nutrient levels being examined in these studies are relevant to general clinical populations and represent suboptimal levels rather than severe deficiencies. These data suggest that moderate deficiencies in single nutrients can act as permissive factors for FASD, and that adequate nutritional status or intervention through supplementation may provide protection from some of the adverse effects of prenatal alcohol exposure.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal/metabolismo , Zinc/metabolismo , Reacción de Fase Aguda/metabolismo , Animales , Etanol/metabolismo , Femenino , Humanos , Estado Nutricional/fisiología , Embarazo , Zinc/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA