Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Rhythms ; 36(1): 4-8, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32875944

RESUMEN

The COVID-19 pandemic has necessitated novel approaches and collaborative efforts across multiple disciplines. It is known that various aspects of our physiology and response to pathogens are under tight clock control. However, the assimilation of circadian biology into our clinical and research practices is still evolving. Using a focused review of the literature and original analyses of the UK Biobank, we discuss how circadian biology may inform our diagnostic and therapeutic strategies in this pandemic.


Asunto(s)
COVID-19/prevención & control , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , COVID-19/virología , Femenino , Humanos , Masculino , Modelos Biológicos , Pandemias , SARS-CoV-2/fisiología , Factores de Tiempo
2.
Nat Med ; 18(12): 1768-77, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23142819

RESUMEN

Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight.


Asunto(s)
Factores de Transcripción ARNTL/deficiencia , Adipocitos/metabolismo , Regulación del Apetito/genética , Ritmo Circadiano/fisiología , Metabolismo Energético/fisiología , Obesidad/genética , Factores de Transcripción ARNTL/genética , Absorciometría de Fotón , Animales , Regulación del Apetito/fisiología , Western Blotting , Calorimetría , Inmunoprecipitación de Cromatina , Cromatografía Liquida , Cartilla de ADN/genética , Análisis Discriminante , Metabolismo Energético/genética , Ácidos Grasos Insaturados/metabolismo , Eliminación de Gen , Técnicas Histológicas , Hipotálamo/metabolismo , Espectrometría de Masas , Ratones , Neuropéptidos/metabolismo , Análisis por Matrices de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas
3.
Circulation ; 123(6): 631-9, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21282500

RESUMEN

BACKGROUND: Microsomal (m) prostaglandin (PG) E2 synthase (S)-1 catalyzes the formation of PGE2 from PGH2, a cyclooxygenase product that is derived from arachidonic acid. Previous studies in mice suggest that targeting mPGES-1 may be less likely to cause hypertension or thrombosis than cyclooxygenase-2-selective inhibition or deletion in vivo. Indeed, deletion of mPGES-1 retards atherogenesis and angiotensin II-induced aortic aneurysm formation. The role of mPGES-1 in the response to vascular injury is unknown. METHODS AND RESULTS: Mice were subjected to wire injury of the femoral artery. Both neointimal area and vascular stenosis were significantly reduced 4 weeks after injury in mPGES-1 knockout mice compared with wild-type controls (65.6 ± 5.7 versus 37.7 ± 5.1 × 10³ pixel area and 70.5 ± 13.4% versus 47.7 ± 17.4%, respectively; P < 0.01). Induction of tenascin-C, a proproliferative and promigratory extracellular matrix protein, after injury was attenuated in the knockouts. Consistent with in vivo rediversion of PG biosynthesis, mPGES-1-deleted vascular smooth muscle cells generated less PGE2 but more PGI2 and expressed reduced tenascin-C compared with wild-type cells. Both suppression of PGE2 and augmentation of PGI2 attenuate tenascin-C expression and vascular smooth muscle cell proliferation and migration in vitro. CONCLUSIONS: Deletion of mPGES-1 in mice attenuates neointimal hyperplasia after vascular injury, in part by regulating tenascin-C expression. This raises for consideration the therapeutic potential of mPGES-1 inhibitors as adjuvant therapy for percutaneous coronary intervention.


Asunto(s)
Arteria Femoral/enzimología , Arteria Femoral/lesiones , Oxidorreductasas Intramoleculares/metabolismo , Microsomas/enzimología , Animales , Movimiento Celular , Proliferación Celular , Constricción Patológica/enzimología , Constricción Patológica/patología , Dinoprostona/biosíntesis , Epoprostenol/biosíntesis , Oxidorreductasas Intramoleculares/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/enzimología , Prostaglandina H2/metabolismo , Prostaglandina-E Sintasas , Tenascina/metabolismo , Túnica Íntima/enzimología , Túnica Íntima/lesiones , Túnica Íntima/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA