Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Europace ; 18(9): 1287-98, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26622055

RESUMEN

Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting.


Asunto(s)
Cardiología/métodos , Fármacos Cardiovasculares/uso terapéutico , Cardiopatías , Farmacología/métodos , Investigación Biomédica Traslacional/métodos , Animales , Biomarcadores/metabolismo , Técnicas de Imagen Cardíaca , Cardiotoxicidad , Fármacos Cardiovasculares/efectos adversos , Conducta Cooperativa , Difusión de Innovaciones , Técnicas Electrofisiológicas Cardíacas , Cardiopatías/diagnóstico por imagen , Cardiopatías/tratamiento farmacológico , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Comunicación Interdisciplinaria , Modelos Cardiovasculares , Modelación Específica para el Paciente , Valor Predictivo de las Pruebas , Pronóstico , Asociación entre el Sector Público-Privado
2.
Circ Arrhythm Electrophysiol ; 6(5): 967-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23969531

RESUMEN

BACKGROUND: Anisotropy of conduction facilitates re-entry and is, therefore, a key determinant of the stability of atrial fibrillation (AF). Little is known about the effect of AF on atrial bundle architecture and consequent changes in anisotropy of conduction and maintenance of AF. METHODS AND RESULTS: Direct contact mapping was performed in left atria of goats with acute AF (n=6) or persistent AF (n=5). The degree and direction of anisotropic conduction were analyzed. Mapped tissue regions were imaged by high-resolution MRI for identification of endocardial and epicardial bundle directions. Correlation between endocardial and epicardial bundle directions and between bundle directions and anisotropic conduction was quantified. In persistent AF, epicardial bundles were oriented more perpendicularly to endocardial bundles than in acute AF (% angles<20° between epicardial and endocardial bundle directions were 7.63% and 21.25%, respectively; P<0.01). In acute AF, the direction of epicardially mapped anisotropic conduction correlated with endocardial but not with epicardial bundles. In persistent AF, the direction of anisotropic conduction correlated better with epicardial than with endocardial bundles (% angles<20° between direction of anisotropic conduction and bundle direction were 28.77% and 18.45%, respectively; P<0.01). CONCLUSIONS: During AF, atrial bundle rearrangement manifests itself in more perpendicular orientation of epicardial to endocardial bundles. Propagation of fibrillation waves is dominated by endocardial bundles in acute AF and by epicardial bundles in persistent AF. Together with the loss of endo-epicardial electrical connections, rearrangement of atrial bundles underlies endo-epicardial dissociation of electrical activity and the development of a 3-dimensional AF substrate.


Asunto(s)
Fibrilación Atrial/patología , Atrios Cardíacos/patología , Sistema de Conducción Cardíaco/patología , Animales , Anisotropía , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Cabras , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Imagen por Resonancia Magnética
3.
Am J Physiol Heart Circ Physiol ; 298(2): H699-718, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933417

RESUMEN

Recent advances in magnetic resonance (MR) imaging technology have unveiled a wealth of information regarding cardiac histoanatomical complexity. However, methods to faithfully translate this level of fine-scale structural detail into computational whole ventricular models are still in their infancy, and, thus, the relevance of this additional complexity for simulations of cardiac function has yet to be elucidated. Here, we describe the development of a highly detailed finite-element computational model (resolution: approximately 125 microm) of rabbit ventricles constructed from high-resolution MR data (raw data resolution: 43 x 43 x 36 microm), including the processes of segmentation (using a combination of level-set approaches), identification of relevant anatomical features, mesh generation, and myocyte orientation representation (using a rule-based approach). Full access is provided to the completed model and MR data. Simulation results were compared with those from a simplified model built from the same images but excluding finer anatomical features (vessels/endocardial structures). Initial simulations showed that the presence of trabeculations can provide shortcut paths for excitation, causing regional differences in activation after pacing between models. Endocardial structures gave rise to small-scale virtual electrodes upon the application of external field stimulation, which appeared to protect parts of the endocardium in the complex model from strong polarizations, whereas intramural virtual electrodes caused by blood vessels and extracellular cleft spaces appeared to reduce polarization of the epicardium. Postshock, these differences resulted in the genesis of new excitation wavefronts that were not observed in more simplified models. Furthermore, global differences in the stimulus recovery rates of apex/base regions were observed, causing differences in the ensuing arrhythmogenic episodes. In conclusion, structurally simplified models are well suited for a large range of cardiac modeling applications. However, important differences are seen when behavior at microscales is relevant, particularly when examining the effects of external electrical stimulation on tissue electrophysiology and arrhythmia induction. This highlights the utility of histoanatomically detailed models for investigations of cardiac function, in particular for future patient-specific modeling.


Asunto(s)
Simulación por Computador , Fenómenos Electrofisiológicos/fisiología , Ventrículos Cardíacos/anatomía & histología , Modelos Anatómicos , Modelos Animales , Modelos Biológicos , Función Ventricular/fisiología , Animales , Estimulación Eléctrica , Técnicas Electrofisiológicas Cardíacas , Femenino , Análisis de Elementos Finitos , Imagen por Resonancia Magnética , Conejos
4.
IEEE Trans Biomed Eng ; 56(5): 1318-30, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19203877

RESUMEN

Significant advancements in imaging technology and the dramatic increase in computer power over the last few years broke the ground for the construction of anatomically realistic models of the heart at an unprecedented level of detail. To effectively make use of high-resolution imaging datasets for modeling purposes, the imaged objects have to be discretized. This procedure is trivial for structured grids. However, to develop generally applicable heart models, unstructured grids are much preferable. In this study, a novel image-based unstructured mesh generation technique is proposed. It uses the dual mesh of an octree applied directly to segmented 3-D image stacks. The method produces conformal, boundary-fitted, and hexahedra-dominant meshes. The algorithm operates fully automatically with no requirements for interactivity and generates accurate volume-preserving representations of arbitrarily complex geometries with smooth surfaces. The method is very well suited for cardiac electrophysiological simulations. In the myocardium, the algorithm minimizes variations in element size, whereas in the surrounding medium, the element size is grown larger with the distance to the myocardial surfaces to reduce the computational burden. The numerical feasibility of the approach is demonstrated by discretizing and solving the monodomain and bidomain equations on the generated grids for two preparations of high experimental relevance, a left ventricular wedge preparation, and a papillary muscle.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Corazón/anatomía & histología , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Cardiovasculares , Algoritmos , Simulación por Computador , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA