Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animals (Basel) ; 13(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37443994

RESUMEN

Red beetroot is a well-recognized and established source of bioactive compounds (e.g., betalains and polyphenols) with anti-inflammatory and antimicrobial properties. It is proposed as a potential alternative to zinc oxide with a focus on gut microbiota modulation and metabolite production. In this study, weaned pigs aged 28 days were fed either a control diet, a diet supplemented with zinc oxide (3000 mg/kg), or 2% and 4% pulverized whole red beetroot (CON, ZNO, RB2, and RB4; respectively) for 14 days. After pigs were euthanized, blood and digesta samples were collected for microbial composition and metabolite analyses. The results showed that the diet supplemented with red beetroot at 2% improved the gut microbial richness relative to other diets but marginally influenced the cecal microbial diversity compared to a zinc-oxide-supplemented diet. A further increase in red beetroot levels (4%-RB4) led to loss in cecal diversity and decreased short chain fatty acids and secondary bile acid concentrations. Also, an increased Proteobacteria abundance, presumably due to increased lactate/lactic-acid-producing bacteria was observed. In summary, red beetroot contains several components conceived to improve the gut microbiota and metabolite output of weaned pigs. Future studies investigating individual components of red beetroot will better elucidate their contributions to gut microbiota modulation and pig health.

3.
Proc Nutr Soc ; 62(2): 279-90, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-14506875

RESUMEN

Plant secondary metabolites are a natural resource that is largely unexploited in 'conventional' animal production systems. They have in the past been generally considered as a source of antinutritional factors, and not as a source of exploitable performance-enhancing compounds. Recent and continuing changes to legislation controlling the use of animal feed additives have stimulated interest in bioactive secondary metabolites as alternative performance enhancers. They are broadly compatible with current thinking on the future of agriculture and food in Europe, and with consumer opinion. Interest has been largely on their manipulative role in the digestive and absorptive processes of the hindgut. The present paper will review the use of plants and their extracts to manipulate the rumen microbial ecosystem to improve the efficiency of rumen metabolism. The bioavailability of secondary metabolites and their actions on peripheral metabolism will be considered with a view to improving animal performance. The challenge of delivering plants and their extracts to animals outdoors in a controlled manner will be discussed. Much of what is known about the beneficial roles of plant secondary metabolites on animal performance is circumstantial and is based on tenuous data. In order to more fully exploit their bioactive properties for the benefit of animal performance, modes of action need to be understood. Uptake will be dependent on proven efficacy and consumer acceptance of assurances relating to safety, welfare and the environment.


Asunto(s)
Alimentación Animal , Extractos Vegetales/administración & dosificación , Rumen/metabolismo , Rumiantes/crecimiento & desarrollo , Alimentación Animal/normas , Crianza de Animales Domésticos/métodos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Disponibilidad Biológica , Humanos , Absorción Intestinal , Extractos Vegetales/farmacología , Rumen/microbiología , Rumen/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA