Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38001843

RESUMEN

The genus Salvia L., belonging to the Lamiaceae family, contains more than 900 species distributed in various parts of the world. It is a genus containing aromatic plants used both in the culinary field and above all in the cosmetic area to produce several perfumes. Salvia fruticosa Mill., notoriously known as Greek Salvia, is a plant used since ancient times in traditional medicine, but today cultivated and used in various parts of Europe and Africa. Polar and apolar extracts of this plant confirmed the presence of several metabolites such as abietane and labdane diterpenoids, triterpenoids, steroids, and some flavonoids, causing interesting properties such as sedative, carminative, and antiseptic, while its essential oils (EOs) are mainly characterized by compounds such as 1,8-cineole and camphor. The aim of this work concerns the chemical analysis by GC and GC-MS, and the investigation of the biological properties, of the EO of S. fruticosa plants collected in eastern Sicily. The gas-chromatographic analysis confirmed the presence of 1,8-cineole (17.38%) and camphor (12.81%), but at the same time, also moderate amounts of α-terpineol (6.74%), ß-myrcene (9.07%), camphene (8.66%), ß-pinene (6.55%), and α-pinene (6.45%). To study the protective effect of EOs from S. fruticosa (both the total mixture and the individual compounds) on possible damage induced by heavy metals, an in vitro system was used in which a model organism, the liverwort Conocephalum conicum, was subjected to the effect of a mix of heavy metals (HM) prepared using values of concentrations actually measured in one of the most polluted watercourses of the Campania region, the Regi Lagni. Finally, the antioxidant response and the photosynthetic damage were examined. The exogenous application of the EO yields a resumption of the oxidative stress induced by HM, as demonstrated by the reduction in the Reactive Oxygen Species (ROS) content and by the increased activity of antioxidant enzyme catalase (CAT) and glutathione-S-transferase (GST). Furthermore, plants treated with HMs and EO showed a higher Fv/Fm (maximal quantum efficiency of PSII in the dark) with respect to HMs-only treated ones. These results clearly indicate the protective capacity of the EO of S. fruticosa against oxidative stress, which is achieved at least in part by modulating the redox state through the antioxidant pathway and on photosynthetic damage.

2.
J Colloid Interface Sci ; 483: 154-164, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27552424

RESUMEN

The microstructure of organogels based on monoglycerides of fatty acids (MAGs) and policosanol and on different edible oils was investigated by using different techniques (calorimetry, nuclear magnetic resonance, infrared spectroscopy, rheology, polarized light microscopy) towards a better understanding and control of the oil gelation phenomena. Dynamic moduli were related via a fractal model to microstructural information such as solid content and fractal dimension. Infrared spectroscopy evidenced that network structure in MAGs gel is mainly due to hydrogen bonding, whereas in policosanol system is mainly given by van der Waals interactions. Because of the different relative contribution of molecular interactions, the investigated organogelators exhibit a distinguished macroscopic behavior. MAGs are sensitive to the utilized oil and structuration occurs quickly, even though at a temperature lower than policosanol. Policosanol organogels exhibit a behavior independent of the used oil and a slower gelation rate, as a result of the weaker van der Waals interactions. Nevertheless, at lower concentration a stronger final gel is obtained, probably due to of the large number of interactions arising among the long alkyl chains of the fatty alcohols. Obtained results evidenced that policosanol is very effective in gelation of different oils and seems promising for potential commercial uses.


Asunto(s)
Ácidos Grasos/química , Alcoholes Grasos/química , Monoglicéridos/química , Aceite de Oliva/química , Aceites de Plantas/química , Tecnología de Alimentos , Geles , Humanos , Enlace de Hidrógeno , Transición de Fase , Reología , Aceite de Girasol , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA