Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Res ; 1830: 148810, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38365130

RESUMEN

Genetic selection for high growth rate has resulted in spectacular progress in feed efficiency in chickens. As feed intake and water consumption (WC) are associated and both are affected by environmental conditions, we evaluated WC and its hypothalamic regulation in three broiler-based research lines and their ancestor jungle fowl (JF) under heat stress (HS) conditions. Slow growing ACRB, moderate growing 95RB, fast growing MRB, and JF were exposed to daily chronic cyclic HS (36 °C, 9 h/d) or thermoneutral temperature (24 °C). HS increased WC in the MRB only. Arginine vasopressin (AVP) mRNA levels were decreased by HS in the MRB. Within the renin-angiotensin-aldosterone system (RAAS) system, renin expression was increased by HS in the JF, ACRB, and 95RB, while angiotensin I-converting enzyme (ACE), angiotensin II receptors (type 1, AT1, and type 2, AT2) were affected by line. The expression of aquaporin (AQP2, 7, 9, 10, 11, and 12) genes was upregulated by HS, whereas AQP4 and AQP5 expressions were influenced by line. miRNA processing components (Dicer1, Ago2, Drosha) were significantly different among the lines, but were unaffected by HS. In summary, this is the first report showing the effect of HS on hypothalamic water channel- and noncoding RNA biogenesis-related genes in modern chicken populations and their ancestor JF. These results provide a novel framework for future research to identify new molecular mechanisms and signatures involved in water homeostasis and adaptation to HS.


Asunto(s)
Acuaporina 2 , Pollos , Animales , Pollos/metabolismo , Acuaporina 2/metabolismo , Calor , Respuesta al Choque Térmico , ARN no Traducido/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Dieta/veterinaria
2.
Front Physiol ; 14: 1184636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324386

RESUMEN

Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quality in broiler chickens subjected to cyclic heat stress (HS). Day-of-hatch Cobb 500 male broiler chicks (n = 475) were randomly divided into four groups. Group 1: No heat stress (Thermoneutral) + control diets with no antibiotics; Group 2: heat stress control + control diets; Group 3: heat stress + control diets supplemented with thymol chemotype (45 ppm) and herbal betaine (150 ppm) formulation EO1; Group 4: heat stress + control diets supplemented with phellandrene (45 ppm) and herbal betaine (150 ppm) formulation EO2. From day 10-42, the heat stress groups were exposed to cyclic HS at 35°C for 12 h (8:00-20:00). BW, BWG, FI, and FCRc were measured at d 0, 10, 28, and 42. Chickens were orally gavaged with FITC-d on days 10 (before heat stress) and 42. Morphometric analysis of duodenum and ileum samples and bone mineralization of tibias were done. Meat quality was assessed on day 43 with ten chickens per pen per treatment. Heat stress reduced BW by day 28 (p < 0.05) compared to thermoneutral chickens. At the end of the trial, chickens that received both formulations of EO1 and EO2 had significantly higher BW than HS control chickens. A similar trend was observed for BWG. FCRc was impaired by EO2 supplementation. There was a significant increase in total mortality in EO2 compared with EO1 EO1 chickens had lower FITC-d concentrations at day 42 than the HS control. In addition, EO1 treatment is not statistically different if compared to EO2 and thermoneutral. Control HS broilers had significantly lower tibia breaking strength and total ash at day 42 than heat-stressed chickens supplemented with EO1 and EO2. Heat stress affected intestinal morphology more than thermoneutral chickens. EO1 and EO2 improved intestinal morphology in heat-stressed chickens. Woody breast and white striping were more common in thermoneutral chickens than heat stress chickens. In conclusion, the EO-containing diet could improve broiler chicken growth during cyclic heat stress, becoming increasingly relevant in antibiotic-free production in harsh climates.

3.
Poult Sci ; 101(6): 101827, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35390570

RESUMEN

Commercial broilers have been selected for high growth rate and productivity; however, this has negatively impacted their susceptibility to heat stress (HS). Insight into the molecular mechanisms underlying this vulnerability can help design targeted strategies for improvement of HS tolerance. Red blood cells (RBC) and white blood cells (WBC) were isolated from red jungle fowl and 4 lines of commercial modern broilers. Lines A and B are considered standard-yielding lines, whereas Lines C and D are high-yielding. Cells were cultured at either 37°C or 45°C for 2 h to induce heat stress (HS). Gene expression of cytokines, chemokines, and inflammasome components were measured. Heat shock proteins 27 and 70 (HSPs) in RBC were significantly affected by line (P < 0.05), whereas HSP27 and 60 were affected by temperature (P < 0.05). In WBC, there was a significant line effect on HSP gene expression (P < 0.05), and a significant increase (P < 0.05) in HSP90 in Line D in HS compared to TN conditions. In RBC, there was a main effect of HS on TNFα, CCL4, and CCLL4 (P < 0.05). HS significantly increased IL-8L1 (>30-fold, P < 0.0001) in Line C. Inflammasome genes (NLRP3, NLRC5 and NLRC3) were significantly affected by the line studied (P < 0.05). In WBC, the effect of line was significant for all cytokines, chemokines, and inflammasome components studied (P < 0.05). To examine the mechanical properties of isolated RBC from the 4 commercial lines and jungle fowl, RBC were placed into nematic liquid crystals, where Lines B and D were the most strained, and Line A and the jungle fowl were the least strained. Together, these findings indicate not only the dynamic nature of circulating cells, but the differences in the stress and inflammatory response among commercially available lines and their common ancestor. These profiles have the potential to serve as a future marker for stress responses in broilers, though further study is warranted.


Asunto(s)
Pollos , Trastornos de Estrés por Calor , Animales , Pollos/fisiología , Citocinas/genética , Suplementos Dietéticos , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Calor , Inflamasomas/genética , Leucocitos
4.
Front Physiol ; 12: 784952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899401

RESUMEN

Heat stress has strong adverse effects on poultry production and, thereby, threats its sustainability, which energized scientists to search for innovative and effective solutions. Here, we undertook this study to evaluate the effects of in-feed herbal adaptogen (stress response modifier) supplementation on growth performances, meat quality, and breast amino acid profile in chronic cyclic heat-stressed broilers. Day-old male Cobb 500 chicks (n = 720) were randomly assigned, in environmental chambers (n = 12, 24 pens), to three diet-treatments: a three-phase corn-soybean based diet fed as such (Control, C), or supplemented with the herbal adaptogen at 500 g/1000 kg control diet (NR-PHY-500) or at 1 kg/1000 kg control diet (NR-PHY-1000). From d29 to d42, birds from 9 chambers were exposed to cyclic heat stress (HS, 35°C from 9:30 am-5:30 pm), however, the rest of the chamber were maintained at thermoneutral conditions (24°C, TN), which creates 4 experimental groups: C-TN, C-HS, NR-PHY-500HS, and NR-PHY-1000HS (6 pens/group, 168 birds/group). HS altered growth performance via depression of feed intake and body weight. Adaptogen supplementation stimulated feed intake and averaged 65.95 and 83.25 g better body weight and 5 and 10 points better FCR at low and high dose, respectively, compared to heat-stressed birds. This increase in body weight was mirrored in enhanced weights of body parts (breast, tender, wings, and legs). Adaptogen supplementation modulated also breast amino acid profile, pH, color, and quality. Together, these data suggested that adaptogen supplementation could be a promising solution to alleviate heat stress, however further in-depth investigation for its mode of action and its underlying mechanisms are warranted.

5.
Gen Comp Endocrinol ; 310: 113798, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33961876

RESUMEN

Neuropeptide Y (NPY) is a highly conserved 36-amino acid neurotransmitter, which is primarily expressed in the mammalian arcuate nucleus of the hypothalamus. It is a potent orexigenic neuropeptide, stimulating appetite and inducing feed intake in a variety of species. Recent research has shown that NPY and its receptors can be expressed by peripheral tissues, but their role is not yet well defined. Specifically, this information is particularly sparse in avian species. Therefore, the aim of this study was to determine the expression of NPY and its receptors, and determine their regulation by environmental and nutritional stressors, in the skeletal muscle of avian species using in vivo and in vitro approaches. Here, we show that NPY and its receptors are expressed in chicken breast and leg muscle as well as in quail myoblast (QM7) cell line. Intraperitoneal injection of recombinant NPY increased feed intake in 9-d old chicks and upregulated the expression of NPY and NPY receptors in breast and leg muscle, suggesting autocrine and/or paracrine roles for NPY. Additionally, NPY is able to modulate the mitochondrial network. In breast muscle, a low dose of NPY upregulated (P < 0.05) the expression of genes involved in ATP production (uncoupling protein, UCP; nuclear factor erythroid 2 like 2, NFE2L2) and dynamics (mitofusin 1, MFN1), while a high dose decreased (P < 0.05) markers of mitochondrial dynamics (mitofusin 2, MFN2; OPA1 mitochondrial dynamin like GTPase, OPA1) and increased (P < 0.05) genes involved in mitochondrial biogenesis (D-loop, peroxisome proliferator activated receptor gamma, PPARG). In leg muscle, NPY decreased (P < 0.05) markers of mitochondrial biogenesis and ATP synthesis (D-loop; peroxisome proliferator activated receptor alpha, PCG1A; peroxisome proliferator-activated receptor gamma, coactivator 1 beta, PPARGC1B; PPARG; NFE2L2). In QM7 cells, genes associated with mitochondrial biogenesis, dynamics, and ATP synthesis were all upregulated (P < 0.05), even though basal respiration and ATP production were decreased (P < 0.05) with NPY treatment as measured by XF Flux analysis. Together, these data show that the NPY system is expressed in avian skeletal muscle and plays a role in mitochondrial function.


Asunto(s)
Pollos , Neuropéptido Y , Animales , Pollos/metabolismo , Hipotálamo/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo
6.
Animals (Basel) ; 11(4)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920255

RESUMEN

The objective of the present research was to assess the dietary supplementation of three formulations of essential oils (EO) in chickens under heat stress (HS). Day-of-hatch Cobb 500 chicks (n = 500) were randomly distributed into four groups: 1. HS control + control diets; 2. HS + control diets supplemented with 37 ppm EO of Lippia origanoides (LO); 3. HS + control diets supplemented with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm red beetroot; 4. HS + 45 ppm LO + 45 ppm RO + 300 ppm natural betaine. Chickens that received the EO showed significant (p < 0.05) improvement on BW, BWG, FI, and FCR compared to control HS chickens. Average body core temperature in group 3 and group 4 was significantly (p < 0.05) reduced compared with the HS control group and group 2. Experimental groups showed a significant reduction in FITC-d at 42 days, a significant increase in SOD at both days but a significant reduction of IFN-γ and IgA compared with HS control (p < 0.05). Bone mineralization was significantly improved by EO treatments (p < 0.05). Together these data suggest that supplemental dietary EO may reduce the harmful effects of HS.

7.
Poult Sci ; 100(3): 100801, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33518325

RESUMEN

Heat stress (HS) is a critical concern to the poultry industry as it affects both productivity and well-being. Various managerial and nutritional strategies have been proposed to mitigate the negative effects of HS in chickens, with plant-based additives showing promise. Recently, we reported the positive effect of a phytogenic feed additive (PFA) on growth performance in HS birds. Owing to the antioxidant nature of these compounds, we sought to further explore the effect of PFA on whole blood circulating chemokines, cytokines, and inflammasomes in HS broilers. Broilers (600 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to 2 environmental conditions (12 h cyclic heat stress, HS, 35°C vs. thermoneutral condition [TN], 24°C) and fed 3 diets (control, PFA-C 250 ppm, PFA-C 400 ppm) in a 2 × 3 factorial design. After 21 d of cyclic HS, blood samples were collected for target gene expression analysis. HS upregulated the expression of superoxide dismutase 1 (SOD1) and downregulated glutathione peroxidase-3 (GPX-3), and there was diet × temperature interaction for SOD2, GPX-1, and GPX-3, where gene expression was increased by PFA-C250 during HS but was unchanged for PFA-C400. Plasma total antioxidant capacity (TAC) and malondialdehyde (MDA) content were increased by HS. Gene expression of interleukin-18 (IL-18) was decreased by HS, without further effect of PFA. HS increased tumor necrosis factor α (TNFα), but this effect was mitigated by PFA-C400. C-C motif chemokine ligands 4 and 20 (CCL4 and CCL20) showed a similar pattern to TNFα, with PFA-C400 ameliorating the negative effect of HS. The nucleotide-binding, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome was decreased by HS and further lowered by PFA-C400, but the nucleotide-binding oligomerization domain, leucine-rich repeat, and CARD domain containing 3 (NLRC3) and nucleotide-binding, leucine-rich repeat containing X1 (NLRX1) inflammasomes were increased by PFA under TN conditions, with no effects of HS. Heat shock proteins (HSP) and heat shock factors (HSF) were unaffected by PFA or HS. Together these data indicate that gene expression of circulating inflammatory factors are dysregulated during HS, and supplemental dietary PFA may be protective.


Asunto(s)
Pollos , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Respuesta al Choque Térmico , Inflamasomas , Extractos Vegetales , Animales , Antioxidantes/farmacología , Pollos/sangre , Pollos/genética , Pollos/inmunología , Dieta/veterinaria , Inflamasomas/sangre , Inflamasomas/genética , Masculino , Extractos Vegetales/farmacología , Distribución Aleatoria , Transcriptoma
8.
Poult Sci ; 99(8): 4009-4015, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32731988

RESUMEN

Woody breast (WB) myopathy is a major concern and economic burden to the poultry industry, and for which, there is no effective solution because of its unknown etiology. In a previous study, we have shown that phytase (Quantum Blue, QB) reduces the WB severity by 5% via modulation of oxygen homeostasis-related pathways. As WB has been suggested to be associated with lipid dysmetabolism, we aimed to determine the effect of QB on WB and breast muscle fatty acid profile. Male broilers were subjected to 6 treatments (96 birds/treatment): a nutrient adequate control group (PC), the PC supplemented with 0.3% myo-inositol (PC + MI), a negative control (NC) deficient in available P and Ca by 0.15 and 0.16%, respectively, the NC fed with QB at 500 (NC+500 FTU), and 1,000 (NC+ 1,000 FTU) or 2,000 FTU/kg of feed (NC+2,000 FTU). Woody breast and white striping scores were recorded, and fatty acid profiles were determined using gas liquid chromatography. Woody breast-affected muscles exhibited a significant higher incidence of white striping as liquid chromatography analysis reveals an imbalance of fatty acid profile in the breast of WB-affected birds with a significant higher percent of saturated fatty acids (SFA, myristic [14:0], pentadecanoic [15:0], and margaric [17:0]) and monounsaturated fatty acids (myristoleic [14:1], palmitoleic [16:1c], 10-trans-heptadecenoic [17:1t], oleic [18:1c9], and vaccenic [18:1c11]), and lower content of polyunsaturated fatty acids (PUFA) and omega-3 (P < 0.05). Quantum Blue at high doses (1,000 and 2,000 FTU) significantly reduces the percent of SFA and increases that of PUFA compared with the control group. In conclusion, WB myopathy seemed to be associated with an imbalance of fatty acid profile, and QB ameliorates the severity of WB potentially via modulation of SFA and PUFA contents.


Asunto(s)
6-Fitasa , Pollos , Suplementos Dietéticos , Músculo Esquelético , 6-Fitasa/metabolismo , 6-Fitasa/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Ácidos Grasos/análisis , Masculino , Músculo Esquelético/efectos de los fármacos , Distribución Aleatoria
9.
J Anim Sci ; 98(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32047923

RESUMEN

Heat stress (HS) is a financial and physiological burden on the poultry industry and the mitigation of the adverse effects of HS is vital to poultry production sustainability. The purpose of this study was, therefore, to determine the effects of an amino acid-chelated trace mineral supplement on growth performance, stress and inflammatory markers, and meat quality in heat-stressed broilers. One day-old Cobb 500 male broilers (n = 480) were allocated into 12 environmental chambers (24 floor pens) and divided into two groups: one group supplemented with amino acid-chelated trace mineral in drinking water and one control group. On day 28, birds were subjected to chronic heat stress (HS, 2 wk, 35 °C and 20% to 30% RH) or maintained at thermoneutral condition (TN, 24 °C) in a 2 × 2 factorial design. Feed intake (FI), water consumption, and body weight were recorded. At day 42, serum fluorescein isothiocyanate dextran (FITC-D) levels, blood gas, electrolyte, and stress markers were measured. Jejunum samples were collected to measure gene expression of stress, inflammation, and tight junction proteins. The rest of the birds were processed to evaluate carcass traits. HS resulted in an increase in core body temperature, which increased water intake and decreased FI, body weight, and feed efficiency (P < 0.05). HS reduced carcass yield and the weight of all parts (P < 0.05). HS significantly increased levels of circulating corticosterone (CORT), heat shock protein 70 (HSP70), interleukin 18 (IL-18), tumor necrosis factor alpha, C-reactive protein, and nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 expression. HS significantly increased serum FITC-D levels and the expression of HSP70 and IL-18 in the jejunum. Although it did not affect the growth performance, amino acid-chelated trace mineral supplementation reversed the effect of HS by reducing CORT and FITC-D levels and the expression of stress and proinflammatory cytokines in the circulation and the jejunum. However, it upregulated these parameters in birds maintained under TN conditions. Together, these data indicate that the amino acid-chelated trace mineral might alleviate stress and inflammation and improve gut integrity in heat-stressed but not thermoneutral broilers.


Asunto(s)
Pollos , Citocinas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Trastornos de Estrés por Calor/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Oligoelementos/farmacología , Aminoácidos/farmacología , Animales , Quelantes/farmacología , Citocinas/genética , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Calor , Yeyuno/metabolismo , Masculino , Agua
10.
J Anim Sci ; 96(9): 3757-3767, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30184154

RESUMEN

Phytogenics have been reported to improve growth performances in farm animals and are thereby considered as potential key solutions for antibiotic-free livestock nutrition. Yet, their effects on meat quality are still not well defined; therefore, the aim of this study was to determine the effects of 5 experimental phytogenic additives (3 dietary and 2 water supplements) on growth and meat quality in broilers. One-day-old broiler chicks (n = 576) were assigned to 48 floor pens and divided into 6 treatments (Control, AV/HGP/16 premix [AVHGP], Superliv concentrate premix [SCP], bacteriostatic herbal growth promotor [BHGP], AV/SSL/12 [AVSSL], and Superliv Gold [SG]) in a complete randomized design (8 pens/treatment with 12 birds/pen, and 96 birds/group). Feed intake and BW were recorded, and birds were processed at 42 d to evaluate carcass traits. Breast muscle tissues were excised to determine stress- and antioxidant-related genes expression. Both AVSSL- and SG-treated broilers produced heavier (P < 0.05) slaughter weights compared with the control-fed broilers, whereas AVSSL supplementation decreased (P < 0.05) fat pad size and increased (P < 0.05) breast weights compared with the control-fed broilers. Although pH and a* values remained unchanged, L* was decreased (P < 0.05) in all treatment and b* was reduced (P < 0.05) in SG when compared with controls. The trained sensory panelists detected more (P < 0.05) green herb flavor in the breast meat from AVHGP than SCP, SG, and control birds. The expression of superoxide dismutase 2, extracellular signal-regulated kinase 1/2, and JNK gene was upregulated in AVHGP and BHGP compared with the control (P < 0.05). Together, these results indicated that phytogenic additives might improve meat quality of broilers through modulation of stress- and antioxidant-related pathways.


Asunto(s)
Alimentación Animal , Pollos , Carne , Animales , Antioxidantes/metabolismo , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Suplementos Dietéticos , Masculino , Carne/análisis , Carne/normas , Músculo Esquelético/metabolismo , Distribución Aleatoria , Superóxido Dismutasa
11.
J Nutr ; 145(5): 855-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25788584

RESUMEN

BACKGROUND: In recent years, there has been a growing body of evidence indicating that replacing cholecalciferol (vitamin D3) with 25-hydroxycholecalciferol [25(OH)D3] through dietary supplementation enhances breast meat yield in broiler chickens. However, the underlying molecular mechanisms are still unknown. OBJECTIVE: We investigated the effect of 25(OH)D3 on male broiler growth performance (body weight, feed intake, feed conversion ratio, and breast meat yield), muscle protein synthesis, and the potential underlying molecular mechanisms. METHODS: Male Cobb 500 broiler chickens were divided into 4 body weight-matched groups and received a control diet with normal cholecalciferol (2760 IU/kg feed) for 42 d, a diet with high concentrations of cholecalciferol (5520 IU/kg feed) for 42 d, or a diet with 25(OH)D3 (5520 IU/kg feed) for 42 d (HyD-42). A fourth group consumed the HyD-42 for 21 d and then control feed for 21 d (HyD-21) (n = 360 birds, 12 replicates/treatment). Food and clean water were available for ad libitum consumption. At the end of the 42-d experiment, protein turnover was measured by phenylalanine flooding dose. Breast muscle tissues were collected and protein synthesis-related gene and protein expression were measured by real time polymerase chain reaction and Western blot, respectively. Functional studies were performed in vitro with the use of a quail myoblast (QM7) cell line. QM7 cells were treated with 2 doses (1 nM and 10 nM) of cholecalciferol or 25(OH)D3 alone or in combination with 100 nM rapamycin, and cell proliferation was determined by cell proliferation assay. Protein synthesis-related gene and protein expression were also determined. RESULTS: The HyD-42 increased 25(OH)D3 circulating concentrations by 126% (P < 0.05), enhanced breast meat yield (P < 0.05), and increased the fractional rate of protein synthesis by 3-fold (P < 0.05) compared with the control diet. Molecular analyses revealed that breast muscle from chickens consuming the HyD-42 expressed significantly higher concentrations of vitamin D receptor (VDR), phospho mechanistic target of rapamycin(Ser2481), phospho ribosomal P70 S6 kinase (RPS6K)(Thr421/Ser424), and antigen Ki-67 (Ki67) compared with the other groups. In line with the in vivo data, in vitro functional studies showed that cells treated with 25(OH)D3 for 24 h had increased VDR expression, and activated the mechanistic target of rapamycin (mTOR)/S6 kinase (S6K) pathway, enhanced Ki67 protein concentrations, and induced QM7 cell proliferation compared with untreated or cholecalciferol-treated cells. Blocking the mTOR pathway with rapamycin reversed these effects. CONCLUSION: Taken together, our findings provide evidence that the effects of 25(OH)D3 on male broiler breast muscle are likely mediated through the mTOR-S6K pathway.


Asunto(s)
Calcifediol/administración & dosificación , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Desarrollo de Músculos , Músculos Pectorales/crecimiento & desarrollo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Animales Endogámicos , Arkansas , Proteínas Aviares/antagonistas & inhibidores , Proteínas Aviares/biosíntesis , Proteínas Aviares/metabolismo , Calcifediol/sangre , Calcifediol/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Pollos/sangre , Pollos/metabolismo , Ingestión de Energía , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Carne/análisis , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos Pectorales/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad Proteica/efectos de los fármacos , Codorniz , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA