Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EBioMedicine ; 95: 104762, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586112

RESUMEN

BACKGROUND: Dolutegravir (DTG) is a recommended first-line regimen for all people with Human Immunodeficiency Virus (HIV) infection. Initial findings from Botswana, a country with no folate fortification program, showed an elevated prevalence of neural tube defects (NTDs) with peri-conceptional exposure to DTG. Here we explore whether a low folate diet influences the risk of DTG-associated foetal anomalies in a mouse model. METHODS: C57BL/6 mice fed a folate-deficient diet for 2 weeks, were mated and then randomly allocated to control (water), or 1xDTG (2.5 mg/kg), or 5xDTG (12.5 mg/kg) both administered orally with 50 mg/kg tenofovir disoproxil fumarate 33.3 mg/kg emtricitabine. Treatment was administered once daily from gestational day (GD) 0.5 to sacrifice (GD15.5). Foetuses were assessed for gross anomalies. Maternal and foetal folate levels were quantified. FINDINGS: 313 litters (103 control, 106 1xDTG, 104 5xDTG) were assessed. Viability, placental weight, and foetal weight did not differ between groups. NTDs were only observed in the DTG groups (litter rate: 0% control; 1.0% 1xDTG; 1.3% 5xDTG). Tail, abdominal wall, limb, craniofacial, and bleeding defects all occurred at higher rates in the DTG groups versus control. Compared with our previous findings on DTG usage in folate-replete mouse pregnancies, folate deficiency was associated with higher rates of several defects, including NTDs, but in the DTG groups only. We observed a severe left-right asymmetry phenotype that was more frequent in DTG groups than controls. INTERPRETATION: Maternal folate deficiency may increase the risk for DTG-associated foetal defects. Periconceptional folic acid supplementation could be considered for women with HIV taking DTG during pregnancy, particularly in countries lacking folate fortification programs. FUNDING: This project has been funded by Federal funds from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN275201800001I and award #R01HD104553. LS is supported by a Tier 1 Canada Research Chair in Maternal-Child Health and HIV. HM is supported by a Junior Investigator award from the Ontario HIV Treatment Network.


Asunto(s)
Deficiencia de Ácido Fólico , Infecciones por VIH , Defectos del Tubo Neural , Femenino , Embarazo , Humanos , Ratones , Animales , Incidencia , Placenta , Ratones Endogámicos C57BL , Ácido Fólico , Deficiencia de Ácido Fólico/complicaciones , Defectos del Tubo Neural/etiología , Modelos Animales de Enfermedad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Intercambio Materno-Fetal , Feto , Ontario
2.
Biology (Basel) ; 11(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36138850

RESUMEN

OBJECTIVE: Comorbid congenital malformation of multiple organs may indicate a shared genetic/teratogenic causality. Folic acid supplementation reduces the population-level prevalence of isolated neural tube defects (NTDs), but whether complex cases involving independent malformations are also responsive is unknown. We aimed to describe the epidemiology of NTDs with comorbid malformations in a Chinese population and assess the impact of folic acid supplementation. STUDY DESIGN: Data from five counties in Northern China were obtained between 2002 and 2021 through a population-based birth defects surveillance system. All live births, stillbirths, and terminations because of NTDs at any gestational age were recorded. NTDs were classified as spina bifida, anencephaly, or encephalocele. Isolated NTDs included spina bifida cases with presumed secondary malformations (hydrocephalus, hip dislocation, talipes). Non-isolated NTDs were those with independent concomitant malformations. RESULTS: A total of 296,306 births and 2031 cases of NTDs were recorded from 2002-2021. A total of 4.8% of NTDs (97/2031) had comorbid defects, which primarily affected the abdominal wall (25/97), musculoskeletal system (24/97), central nervous system (22/97), and face (15/97). The relative risk of cleft lip and/or palate, limb reduction defects, hip dislocation, gastroschisis, omphalocele, hydrocephalus, and urogenital system defects was significantly greater in infants with NTDs than in the general population. Population-level folic acid supplementation significantly reduced the prevalence of both isolated and non-isolated NTDs. CONCLUSION: Epidemiologically, non-isolated NTDs follow similar trends as isolated cases and are responsive to primary prevention by folic acid supplementation. Various clinically-important congenital malformations are over-represented in individuals with NTDs, suggesting a common etiology.

3.
China CDC Wkly ; 3(37): 773-777, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34594988

RESUMEN

WHAT IS ALREADY KNOWN ON THIS TOPIC?: The prevalence of structural birth defects, especially neural tube defects, decreased after national folic acid (FA) supplementation initiation. WHAT IS ADDED BY THIS REPORT?: The prevalence of orofacial clefts (OFCs) in five counties of Shanxi Province in northern China, including most subtypes except cleft palate, showed a downward trend in the past two decades. In this study, pre-perinatal prevalence increased due to earlier detection. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Periconceptional supplementation with FA may contribute to the decline in OFCs prevalence, while the effect on the OFCs subtype needs further investigation. Continuing to advocate for earlier supplementation (3 months before conception) and increased supplementation frequency (daily consumption) could promote further reduction in the prevalence of OFCs. Specific surveillance of this effect in the era of universal three-child policy is warranted.

4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638926

RESUMEN

Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.


Asunto(s)
Diabetes Gestacional/tratamiento farmacológico , Inositol/farmacología , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Testosterona/metabolismo , Células Tecales/efectos de los fármacos , Diabetes Gestacional/metabolismo , Femenino , Humanos , Inositol/química , Inositol/metabolismo , Estructura Molecular , Síndrome del Ovario Poliquístico/metabolismo , Embarazo , Transducción de Señal/efectos de los fármacos , Células Tecales/metabolismo
5.
Adv Nutr ; 12(1): 212-222, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32892218

RESUMEN

Supplementation with myo-inositol during the periconceptional period of pregnancy may ameliorate the recurrence risk of having a fetus affected by a neural tube defect (NTD; e.g., spina bifida). This could be of particular importance in providing a means for preventing NTDs that are unresponsive to folic acid. This review highlights the characteristics of inositol and describes the role of myo-inositol in the prevention of NTDs in rodent studies and the evidence for its efficacy in reducing NTD risk in human pregnancy. The possible reduction in NTD risk by maternal myo-inositol implies functional and developmentally important maternal-embryonic inositol interrelationships and also suggests that embryonic uptake of myo-inositol is crucial for embryonic development. The establishment of active myo-inositol cellular uptake mechanisms in the embryonic stages of human pregnancy, when the neural tube is closing, is likely to be an important determinant of normal development. We draw attention to the generation of materno-fetal inositol concentration gradients and relationships, and outline a transport pathway by which myo-inositol may be delivered to the early developing human embryo. These considerations provide novel insights into the mechanisms that may underpin inositol's ability to confer embryonic developmental benefit.


Asunto(s)
Defectos del Tubo Neural , Femenino , Ácido Fólico , Humanos , Inositol , Defectos del Tubo Neural/prevención & control , Embarazo , Disrafia Espinal , Saco Vitelino
6.
Cereb Cortex ; 31(1): 635-649, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32995858

RESUMEN

Folate is an essential micronutrient required for both cellular proliferation through de novo nucleotide synthesis and epigenetic regulation of gene expression through methylation. This dual requirement places a particular demand on folate availability during pregnancy when both rapid cell generation and programmed differentiation of maternal, extraembryonic, and embryonic/fetal tissues are required. Accordingly, prenatal neurodevelopment is particularly susceptible to folate deficiency, which can predispose to neural tube defects, or when effective transport into the brain is impaired, cerebral folate deficiency. Consequently, adequate folate consumption, in the form of folic acid (FA) fortification and supplement use, is widely recommended and has led to a substantial increase in the amount of FA intake during pregnancy in some populations. Here, we show that either maternal folate deficiency or FA excess in mice results in disruptions in folate metabolism of the offspring, suggesting diversion of the folate cycle from methylation to DNA synthesis. Paradoxically, either intervention causes comparable neurodevelopmental changes by delaying prenatal cerebral cortical neurogenesis in favor of late-born neurons. These cytoarchitectural and biochemical alterations are accompanied by behavioral abnormalities in FA test groups compared with controls. Our findings point to overlooked potential neurodevelopmental risks associated with excessively high levels of prenatal FA intake.


Asunto(s)
Conducta Animal/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Ácido Fólico/farmacología , Embarazo/efectos de los fármacos , Animales , Metilación de ADN/efectos de los fármacos , Suplementos Dietéticos/efectos adversos , Femenino , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/genética , Deficiencia de Ácido Fólico/metabolismo , Ratones Endogámicos C57BL
7.
Dis Model Mech ; 12(11)2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31636139

RESUMEN

Neural tube defects (NTDs), including spina bifida and anencephaly, are among the most common birth defects worldwide, but their underlying genetic and cellular causes are not well understood. Some NTDs are preventable by supplemental folic acid. However, despite widespread use of folic acid supplements and implementation of food fortification in many countries, the protective mechanism is unclear. Pax3 mutant (splotch; Sp2H ) mice provide a model in which NTDs are preventable by folic acid and exacerbated by maternal folate deficiency. Here, we found that cell proliferation was diminished in the dorsal neuroepithelium of mutant embryos, corresponding to the region of abolished Pax3 function. This was accompanied by premature neuronal differentiation in the prospective midbrain. Contrary to previous reports, we did not find evidence that increased apoptosis could underlie failed neural tube closure in Pax3 mutant embryos, nor that inhibition of apoptosis could prevent NTDs. These findings suggest that Pax3 functions to maintain the neuroepithelium in a proliferative, undifferentiated state, allowing neurulation to proceed. NTDs in Pax3 mutants were not associated with abnormal abundance of specific folates and were not prevented by formate, a one-carbon donor to folate metabolism. Supplemental folic acid restored proliferation in the cranial neuroepithelium. This effect was mediated by enhanced progression of the cell cycle from S to G2 phase, specifically in the Pax3 mutant dorsal neuroepithelium. We propose that the cell-cycle-promoting effect of folic acid compensates for the loss of Pax3 and thereby prevents cranial NTDs.


Asunto(s)
Ácido Fólico/administración & dosificación , Mutación , Defectos del Tubo Neural/etiología , Factor de Transcripción PAX3/genética , Animales , Apoptosis , Ciclo Celular/efectos de los fármacos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Defectos del Tubo Neural/prevención & control , Factor de Transcripción PAX3/fisiología
8.
Clin Epigenetics ; 11(1): 13, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30665459

RESUMEN

BACKGROUND: Neural tube defects (NTDs) are common and severe congenital malformations. Pax3 is an essential gene for neural tube closure in mice but it is unknown whether altered expression or methylation of PAX3 contributes to human NTDs. We examined the potential role of hypermethylation of Pax3 in the development of NTDs by analyzing human NTD cases and a mouse model in which NTDs were induced by benzo[a]pyrene (BaP), a widely studied polycyclic aromatic hydrocarbon (PAH). METHODS: We extracted methylation information of PAX3 in neural tissues from array data of ten NTD cases and eight non-malformed controls. A validation study was then performed in a larger independent population comprising 73 NTD cases and 29 controls. Finally, we examined methylation patterns and expression of Pax3 in neural tissues from mouse embryos of dams exposed to BaP or BaP and vitamin E. RESULTS: Seven CpG sites in PAX3 were hypermethylated in NTD fetuses as compared to controls in the array data. In the validation phase, significantly higher methylation levels in the body region of PAX3 were observed in NTD cases than in controls (P = 0.003). And mean methylation intensity in the body region of PAX3 in fetal neural tissues was positively correlated with median concentrations of PAH in maternal serum. In the mouse model, BaP-induced NTDs were associated with hypermethylation of specific CpG sites within both the promoter and body region of Pax3. Supplementation with vitamin E via chow decreased the rate of NTDs, partly recovered the repressed total antioxidant capacity in mouse embryos exposed to BaP, and this was accompanied by the normalization of Pax3 methylation level and gene expression. CONCLUSION: Hypermethylation of Pax3 may play a role in the development of NTDs; DNA methylation aberration may be caused by exposure to BaP, with possible involvement of oxidative stress.


Asunto(s)
Metilación de ADN , Exposición Materna/efectos adversos , Defectos del Tubo Neural/genética , Factor de Transcripción PAX3/genética , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Animales , Estudios de Casos y Controles , Islas de CpG , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Edad Materna , Ratones , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/tratamiento farmacológico , Embarazo , Regiones Promotoras Genéticas , Vitamina E/administración & dosificación , Vitamina E/farmacología
9.
BMJ Open ; 8(11): e022565, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30413501

RESUMEN

OBJECTIVES: Sex differences in prevalence of neural tube defects (NTDs) have previously been recognised; however, the different susceptibility of men and women have not been examined in relation to the effects of folic acid (FA) supplementation. We hypothesised that FA may have a disproportionate effect that alters the sex-specific prevalence of NTDs. SETTING: Data from two time points, before (2003-2004) and after (2011-2016) the start of the supplementation programme, were obtained from a population-based birth defect surveillance programme among five counties in northern China. All live births (28 or more complete gestational weeks), all stillbirths of at least 20 weeks' gestational age and pregnancy terminations at any gestational age following the prenatal diagnosis of NTDs were included. PARTICIPANTS: A total of 25 249 and 83 996 births before and after the programme were included respectively. PRIMARY AND SECONDARY OUTCOME MEASURES: The prevalence of NTDs by sex and subtype, Male:female rate ratios and their 95% CI were calculated. RESULTS: Overall, NTDs were less prevalent among men than among women (rate ratio (RR) 0.92; 95% CI 0.90 to 0.94), so was anencephaly (RR 0.77; 95% CI 0.73 to 0.81) and encephalocele (RR 0.75; 95% CI 0.61 to 0.92), while spina bifida showed a male predominance (RR 1.10; 95% CI 1.05 to 1.15). The overall prevalence of NTDs decreased by 78/10 000 in men and 108.7/10 000 in women from 2003 to 2004 to 2011 to 2016. There was a significant sex difference in the magnitude of reduction, being greater in women than men, particularly for anencephaly. CONCLUSIONS: The prevalence of NTDs decreased in both sexes after the implementation of a massive FA supplementation programme. While female predominance was observed in open NTDs and total NTDs, they also had a greater rate of decrease in NTDs after the supplementation programme.


Asunto(s)
Suplementos Dietéticos , Ácido Fólico/uso terapéutico , Defectos del Tubo Neural , Complejo Vitamínico B/uso terapéutico , China/epidemiología , Femenino , Humanos , Recién Nacido , Masculino , Defectos del Tubo Neural/epidemiología , Defectos del Tubo Neural/prevención & control , Vigilancia de la Población , Embarazo , Prevalencia , Distribución por Sexo
10.
Oncotarget ; 8(42): 72577-72583, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069810

RESUMEN

BACKGROUND: Although a number of studies have reported the recurrence risk of NTDs in developed countries, there is little data on the rate of recurrence of NTDs in northern China, a region of high prevalence of NTDs. METHODS: Based on the population-based birth defects surveillance system of five counties, we identified women who had an NTD affected pregnancy from 2004-2015 and a retrospective survey was conducted. The rate of recurrence of NTDs was calculated by the number of recurrent NTDs divided by the first NTDs. Maternal age, body mass index (BMI), gestational weeks, education, and occupation were collected. Information on folic acid (FA) supplements, time and dosage were also recorded. RESULTS: Among 851 women who had a previous NTD-affected pregnancy, there were 578 subsequent pregnancies, with 10 recurrent NTDs, a 1.7% recurrence rate. The recurrence rate was 1.5% and 2.6% for those taking FA supplements and without FA supplementation respectively. Women with recurrent NTDs had higher BMI before pregnancy compared to those who had a second pregnancy without NTDs. Among the recurrent NTDs, the majority were spina bifida. CONCLUSIONS: The recurrence rate of NTDs was approximately five times higher than the overall prevalence in the same region of northern China. Risk of recurrence appeared lower among women who took FA supplements. These findings are consistent with the reduction in NTD frequency in the population since introduction of the nationwide FA supplement program. Data on recurrence rates in northern China will inform power calculations for future intervention studies.

11.
Hum Mol Genet ; 26(5): 888-900, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28069796

RESUMEN

Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid.


Asunto(s)
Ácido Fólico/efectos adversos , Homocistinuria/genética , Memoria a Corto Plazo/efectos de los fármacos , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Espasticidad Muscular/genética , Acetilcolina/genética , Acetilcolina/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Dieta/efectos adversos , Femenino , Ácido Fólico/administración & dosificación , Homocistinuria/inducido químicamente , Homocistinuria/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/fisiopatología , Metilación , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Ratones , Espasticidad Muscular/inducido químicamente , Espasticidad Muscular/patología , Embarazo , Trastornos Psicóticos/genética , Trastornos Psicóticos/patología
12.
Birth Defects Res ; 109(2): 68-80, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-27324558

RESUMEN

Susceptibility to neural tube defects (NTDs), such as anencephaly and spina bifida is influenced by genetic and environmental factors including maternal nutrition. Maternal periconceptional supplementation with folic acid significantly reduces the risk of an NTD-affected pregnancy, but does not prevent all NTDs, and "folic acid non-responsive" NTDs continue to occur. Similarly, among mouse models of NTDs, some are responsive to folic acid but others are not. Among nutritional factors, inositol deficiency causes cranial NTDs in mice while supplemental inositol prevents spinal and cranial NTDs in the curly tail (Grhl3 hypomorph) mouse, rodent models of hyperglycemia or induced diabetes, and in a folate-deficiency induced NTD model. NTDs also occur in mice lacking expression of certain inositol kinases. Inositol-containing phospholipids (phosphoinositides) and soluble inositol phosphates mediate a range of functions, including intracellular signaling, interaction with cytoskeletal proteins, and regulation of membrane identity in trafficking and cell division. Myo-inositol has been trialed in humans for a range of conditions and appears safe for use in human pregnancy. In pilot studies in Italy and the United Kingdom, women took inositol together with folic acid preconceptionally, after one or more previous NTD-affected pregnancies. In nonrandomized cohorts and a randomized double-blind study in the United Kingdom, no recurrent NTDs were observed among 52 pregnancies reported to date. Larger-scale fully powered trials are needed to determine whether supplementation with inositol and folic acid would more effectively prevent NTDs than folic acid alone. Birth Defects Research 109:68-80, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.


Asunto(s)
Suplementos Dietéticos , Deficiencia de Ácido Fólico/prevención & control , Ácido Fólico/administración & dosificación , Inositol/administración & dosificación , Defectos del Tubo Neural/prevención & control , Tubo Neural/efectos de los fármacos , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Femenino , Deficiencia de Ácido Fólico/genética , Deficiencia de Ácido Fólico/metabolismo , Deficiencia de Ácido Fólico/patología , Humanos , Fosfatos de Inositol/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Tubo Neural/anomalías , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología , Fosfatidilinositoles/metabolismo , Embarazo
13.
Biochimie ; 126: 63-70, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26924399

RESUMEN

The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs.


Asunto(s)
Ácido Fólico/metabolismo , Formiatos/farmacología , Nucleótidos/biosíntesis , Disrafia Espinal , Animales , Modelos Animales de Enfermedad , Ratones , Disrafia Espinal/metabolismo , Disrafia Espinal/prevención & control
14.
Br J Nutr ; 115(6): 974-83, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26847388

RESUMEN

Although peri-conceptional folic acid (FA) supplementation can prevent a proportion of neural tube defects (NTD), there is increasing evidence that many NTD are FA non-responsive. The vitamin-like molecule inositol may offer a novel approach to preventing FA-non-responsive NTD. Inositol prevented NTD in a genetic mouse model, and was well tolerated by women in a small study of NTD recurrence. In the present study, we report the Prevention of Neural Tube Defects by Inositol (PONTI) pilot study designed to gain further experience of inositol usage in human pregnancy as a preliminary trial to a future large-scale controlled trial to evaluate efficacy of inositol in NTD prevention. Study subjects were UK women with a previous NTD pregnancy who planned to become pregnant again. Of 117 women who made contact, ninety-nine proved eligible and forty-seven agreed to be randomised (double-blind) to peri-conceptional supplementation with inositol plus FA or placebo plus FA. In total, thirty-three randomised pregnancies produced one NTD recurrence in the placebo plus FA group (n 19) and no recurrences in the inositol plus FA group (n 14). Of fifty-two women who declined randomisation, the peri-conceptional supplementation regimen and outcomes of twenty-two further pregnancies were documented. Two NTD recurred, both in women who took only FA in their next pregnancy. No adverse pregnancy events were associated with inositol supplementation. The findings of the PONTI pilot study encourage a large-scale controlled trial of inositol for NTD prevention, but indicate the need for a careful study design in view of the unwillingness of many high-risk women to be randomised.


Asunto(s)
Suplementos Dietéticos , Ácido Fólico/uso terapéutico , Inositol/uso terapéutico , Fenómenos Fisiologicos Nutricionales Maternos , Defectos del Tubo Neural/prevención & control , Atención Preconceptiva , Adulto , Estudios de Cohortes , Suplementos Dietéticos/efectos adversos , Método Doble Ciego , Estudios de Factibilidad , Femenino , Ácido Fólico/efectos adversos , Estudios de Seguimiento , Humanos , Inositol/efectos adversos , Inositol/sangre , Inositol/orina , Defectos del Tubo Neural/sangre , Defectos del Tubo Neural/epidemiología , Defectos del Tubo Neural/orina , Cooperación del Paciente , Proyectos Piloto , Embarazo , Recurrencia , Riesgo , Reino Unido/epidemiología , Adulto Joven
15.
Am J Clin Nutr ; 101(3): 646-58, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25733650

RESUMEN

BACKGROUND: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. OBJECTIVE: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. DESIGN: Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. RESULTS: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. CONCLUSIONS: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot accommodate the lipid disturbances and altered membrane integrity arising from changes in phospholipid/lipid metabolism. These preliminary findings may have clinical implications for individuals consuming high-dose folic acid supplements, particularly those who are MTHFR deficient.


Asunto(s)
Suplementos Dietéticos/envenenamiento , Inhibidores Enzimáticos/envenenamiento , Ácido Fólico/envenenamiento , Homocistinuria/etiología , Metabolismo de los Lípidos , Hígado/metabolismo , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Espasticidad Muscular/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Regulación de la Expresión Génica , Heterocigoto , Homocistinuria/metabolismo , Homocistinuria/patología , Homocistinuria/fisiopatología , Lipogénesis , Hígado/patología , Hígado/fisiopatología , Masculino , Metilación , Metilenotetrahidrofolato Reductasa (NADPH2)/antagonistas & inhibidores , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ratones Endogámicos BALB C , Ratones Mutantes , Espasticidad Muscular/metabolismo , Espasticidad Muscular/patología , Espasticidad Muscular/fisiopatología , Mutación , Tamaño de los Órganos , Trastornos Psicóticos/etiología , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/patología , Trastornos Psicóticos/fisiopatología , Organismos Libres de Patógenos Específicos
16.
Annu Rev Neurosci ; 37: 221-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25032496

RESUMEN

Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.


Asunto(s)
Defectos del Tubo Neural , Neurulación/fisiología , Animales , Ácido Fólico/uso terapéutico , Predisposición Genética a la Enfermedad/genética , Humanos , Defectos del Tubo Neural/diagnóstico , Defectos del Tubo Neural/tratamiento farmacológico , Defectos del Tubo Neural/etiología , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/fisiopatología , Defectos del Tubo Neural/prevención & control , Factores de Riesgo
17.
Wiley Interdiscip Rev Dev Biol ; 2(2): 213-27, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009034

RESUMEN

Neural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. 'Open' NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida), and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. 'Closed' NTDs are skin-covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. 'Herniation' NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorized through a pathological opening in the skull or vertebral column (e.g., encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signaling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the bone morphogenetic protein and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid (FA), when taken as a periconceptional supplement, can prevent many cases. Not all NTDs respond to FA, however, and adjunct therapies are required for prevention of this FA-resistant category.


Asunto(s)
Anencefalia/patología , Meningomielocele/patología , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Neurulación/genética , Anencefalia/genética , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Desarrollo Embrionario , Ácido Fólico/administración & dosificación , Ácido Fólico/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meningomielocele/genética , Ratones
18.
Brain ; 136(Pt 9): 2836-41, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23935126

RESUMEN

Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone.


Asunto(s)
Ácido Fólico/efectos adversos , Defectos del Tubo Neural/prevención & control , Nucleósidos de Purina/uso terapéutico , Nucleósidos de Pirimidina/uso terapéutico , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/fisiología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Ácido Fólico/metabolismo , Histonas/metabolismo , Tamaño de la Camada/efectos de los fármacos , Masculino , Exposición Materna , Ratones , Ratones Mutantes , Defectos del Tubo Neural/tratamiento farmacológico , Defectos del Tubo Neural/genética , Embarazo , Estadísticas no Paramétricas , Timidina/uso terapéutico
19.
Hum Mol Genet ; 21(7): 1496-503, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22171071

RESUMEN

Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt(-/-) mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure.


Asunto(s)
Aminometiltransferasa/genética , Proteína H del Complejo de la Glicina Descarboxilasa/genética , Glicina-Deshidrogenasa (Descarboxilante)/genética , Mutación , Defectos del Tubo Neural/genética , Animales , Complejo Glicina-Descarboxilasa/metabolismo , Humanos , Ratones , Ratones Noqueados , Mutación Missense
20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(26): 2759-63, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21856255

RESUMEN

Myo-inositol plays key physiological functions, necessitating development of methodology for quantification in biological matrices. Limitations of current mass spectrometry-based approaches include the need for a derivatisation step and/or sample clean-up. In addition, co-elution of glucose may cause ion suppression of myo-inositol signals, for example in blood or urine samples. We describe an HPLC-MS/MS method using a lead-form resin based column online to a triple quadrupole tandem mass spectrometer, which requires minimum sample preparation and no derivatisation. This method allows separation and selective detection of myo-inositol from other inositol stereoisomers. Importantly, inositol was also separated from hexose monosaccharides of the same molecular weight, including glucose, galactose, mannose and fructose. The inter- and intra-assay variability was determined for standard solutions and urine with inter-assay coefficient of variation (CV) of 1.1% and 3.5% respectively, while intra-assay CV was 2.3% and 3.6%. Urine and blood samples from normal individuals were analysed.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Suplementos Dietéticos/análisis , Inositol/análisis , Espectrometría de Masas en Tándem/métodos , Adulto , Glucosa/metabolismo , Humanos , Inositol/sangre , Inositol/orina , Modelos Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA