Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35564648

RESUMEN

(1) Background: Pelargonium sidoides extracts and lactoferrin are two important natural, anti-inflammatory, and antiviral agents, which can interfere with the early stages of SARS-CoV-2 infection. Molecular docking and molecular dynamics simulation approaches have been applied to check for the occurrence of interactions of the Pelargonium sidoides compounds with lactoferrin and with SARS-CoV-2 components. (2) Methods: Computational methods have been applied to confirm the hypothesis of a direct interaction between PEL compounds and the lactoferrin protein and between Pelargonium sidoides compounds and SARS-CoV-2 Spike, 3CLPro, RdRp proteins, and membrane. Selected high-score complexes were structurally investigated through classical molecular dynamics simulation, while the interaction energies were evaluated using the molecular mechanics energies combined with generalized Born and surface area continuum solvation method. (3) Results: Computational analyses suggested that Pelargonium sidoides extracts can interact with lactoferrin without altering its structural and dynamical properties. Furthermore, Pelargonium sidoides compounds should have the ability to interfere with the Spike glycoprotein, the 3CLPro, and the lipid membrane, probably affecting the functional properties of the proteins inserted in the double layer. (4) Conclusion: Our findings suggest that Pelargonium sidoides may interfere with the mechanism of infection of SARS-CoV-2, especially in the early stages.


Asunto(s)
COVID-19 , Pelargonium , Humanos , Lactoferrina , Simulación del Acoplamiento Molecular , Pelargonium/química , Extractos Vegetales/química , SARS-CoV-2
2.
Cell Death Discov ; 6: 43, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550010

RESUMEN

Human microvesicles are key mediators of cell-cell communication. Exosomes function as microRNA transporters, playing a crucial role in physiological and pathological processes. Plant microvesicles (MVs) display similar features to mammalian exosomes, and these MVs might enhance plant microRNA delivery in mammals. Considering that plant microRNAs have been newly identified as bioactive constituents in medicinal plants, and that their potential role as regulators in mammals has been underlined, in this study, we characterized MVs purified from Moringa oleifera seeds aqueous extract (MOES MVs) and used flow cytometry methods to quantify the ability to deliver their content to host cells. The microRNAs present in MOES MVs were characterized, and through a bioinformatic analysis, specific human apoptosis-related target genes of plant miRNAs were identified. In tumor cell lines, MOES MVs treatment reduced viability, increased apoptosis levels associated with a decrease in B-cell lymphoma 2 protein expression and reduced mitochondrial membrane potential. Interestingly, the effects observed with MOES MVs treatment were comparable to those observed with MOES treatment and transfection with the pool of small RNAs isolated from MOES, used as a control. These results highlight the role of microRNAs transported by MOES MVs as natural bioactive plant compounds that counteract tumorigenesis.

3.
Front Pharmacol ; 11: 620038, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643043

RESUMEN

Traditional medicine is often chosen due to its affordability, its familiarity with patient's cultural practices, and its wider access to the local community. Plants play an important role in providing indispensable nutrients, while specific small RNAs can regulate human gene expression in a cross-kingdom manner. The aim of the study was to evaluate the effects of plant-enriched purified extract microRNAs from Moringa oleifera seeds (MO) on the immune response and on HIV infection. Bioinformatic analysis shows that plant microRNAs (p-miRs) from MO belonging to 18 conserved families, including p-miR160h, p-miR166, p-miR482b, p-miR159c, p-miR395d, p-miR2118a, p-miR393a, p-miR167f-3p, and p-miR858b are predicted to target with high affinity BCL2, IL2RA, TNF, and VAV1, all these being involved in the cell cycle, apoptosis, immune response and also in the regulation of HIV pathogenesis. The effects of MO p-miRs transfected into HIV+ PBMCs were analyzed and revealed a decrease in viability associated with an increase of apoptosis; an increase of T helper cells expressing Fas and a decrease of intracellular Bcl2 protein expression. Meanwhile no effects were detected in PBMCs from healthy donors. In CD4+ T cells, transfection significantly reduced cell activation and modified the T cell differentiation, thereby decreasing both central and effector memory cells while increasing terminal effector memory cells. Interestingly, the p-miRs transfection induces a reduction of intracellular HIV p24 protein and a reduction of viral DNA integration. Finally, we evaluated the effect of synthetic (mimic) p-miR858b whose sequence is present in the MO p-miR pool and predicted to target VAV1, a protein involved in HIV-Nef binding. This protein plays a pivotal role in T cell antigen receptor (TCR) signaling, so triggering the activation of various pathways. The transfection of HIV+ PBMCs with the synthetic p-miR858b showed a reduced expression of VAV1 and HIV p24 proteins. Overall, our evidence defines putative mechanisms underlying a supplementary benefit of traditional medicine, alongside current antiretroviral therapy, in managing HIV infection in resource-limited settings where MO remains widely available.

4.
Exp Ther Med ; 18(1): 5-17, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31258632

RESUMEN

Moringa oleifera Lam. (MO) is one of the most well-known and widely distributed species of the Moringaceae family in African communities, and various preparations of M. oleifera are used for the treatment of several diseases. Due to the extensive worldwide use of MO products, and the use of MO aqueous extract in traditional African medicine, the aim of the present study was to investigate the anti-proliferative, cytotoxic and pro-apoptotic activities of different aqueous extracts from leaves and seeds of M. oleifera (MOE), which have been prepared using different protocols, in lymphoid and monocytoid cells. The results of the present study demonstrated the anti-proliferative and pro-apoptotic effects of the aqueous extracts obtained from M. oleifera leaves and seeds on tumour cells; however, not on peripheral blood mononuclear cells (PBMCs) from healthy donors. The pro-apoptotic effect of MO seed aqueous extract (MOE-S) was correlated with decreased B-cell lymphoma 2 (BCL2) and sirtuin-1 (SIRT1) protein expression, which are involved in apoptosis. Considering the effects of plant secondary metabolites on human cells and the role of plant microRNA in cross-kingdom interactions, the presence of secondary metabolites and microRNA in MOE was characterised. In conclusion, M. oleifera aqueous extracts appeared to be able to differentially regulate proliferation and apoptosis in healthy cells and cancer cells, and this ability could be associated with the microRNA present in the extracts. These results highlighted the possible use of MOE as an adjuvant in traditional cancer therapy.

5.
Glycobiology ; 20(5): 500-6, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20053629

RESUMEN

D-(-)-Lentiginosine [(-)-4], the nonnatural enantiomer of the iminosugar indolizidine alkaloid L-(+)-lentiginosine, acts as apoptosis inducer on tumor cells of different origin, in contrast to its natural enantiomer. Although D-(-)-4 exhibited a proapoptotic activity towards tumor cells at level lower than the chemotherapeutic agent, SN38, it was less proapoptotic towards normal cells and less cytotoxic. Apoptosis induced by D-(-)-4 was caspase-dependent, as shown by the increased expression and activity of caspase-3 and -8 in treated cells, and by inhibition following treatment with the pan caspase inhibitor, ZVAD-FMK. This study highlighted how a natural iminosugar alkaloid and its synthetic enantiomer, which were simply known for their inhibition against a fungal glucoamylase, could behave in a complete different way when tested towards cell growth and death of cells of different origin.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Alcaloides/síntesis química , Alcaloides/química , Clorometilcetonas de Aminoácidos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Camptotecina/análogos & derivados , Camptotecina/farmacología , Caspasa 3/biosíntesis , Caspasa 3/metabolismo , Caspasa 8/biosíntesis , Caspasa 8/metabolismo , Inhibidores de Caspasas , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glucano 1,4-alfa-Glucosidasa/antagonistas & inhibidores , Humanos , Conformación Molecular , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA