Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Pollut Bull ; 198: 115836, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007871

RESUMEN

Identifying the sources of environmental oil contamination can be challenging, especially for oil in motile organisms such as fish. Lipophilic hydrocarbons from oil can bioaccumulate in fish adipose tissue and potentially provide a forensic "fingerprint" of the original oil. Herein, diamondoid hydrocarbon distributions were employed to provide such fingerprints. Indices produced from diamondoids were used to compare extracts from fish adipose tissues and the crude and fuel oils to which the fish were exposed under laboratory conditions. A suite of 20 diamondoids was found to have bioaccumulated in the dietary-exposed fish. Cross-plots of indices between fish and exposure oils were close to the ideal 1:1 relationship. Comparisons with diamondoid distributions of non-exposure oils produced overall, but not exclusively, weaker correlations. Linear Discriminatory Analysis on a combined set of 15 diamondoid and bicyclane molecular ratios was able to identify the exposure oils, so a use of both compound classes is preferable.


Asunto(s)
Aceites Combustibles , Petróleo , Animales , Aceites , Hidrocarburos/análisis , Aceites Combustibles/análisis , Peces , Alimentos Marinos/análisis , Petróleo/análisis
2.
Environ Toxicol Chem ; 42(1): 7-18, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165563

RESUMEN

In the present study, we investigated the possibility of identifying the source oils of exposed fish using ratios of bicyclic sesquiterpane (bicyclane) chemical biomarkers. In the event of an oil spill, identification of source oil(s) for assessment, or for litigation purposes, typically uses diagnostic ratios of chemical biomarkers to produce characteristic oil "fingerprints." Although this has been applied in identifying oil residues in sediments, water, and sessile filtering organisms, so far as we are aware this has never been successfully demonstrated for oil-exposed fish. In a 35-day laboratory trial, juvenile Lates calcarifer (barramundi or Asian seabass) were exposed, via the diet (1% w/w), to either a heavy fuel oil or to Montara, an Australian medium crude oil. Two-dimensional gas chromatography with high-resolution mass spectrometry and gas chromatography-mass spectrometry were then used to measure selected ratios of the bicyclanes to examine whether the ratios were statistically reproducibly conserved in the fish tissues. Six diagnostic bicyclane ratios showed high correlation (r2 > 0.98) with those of each of the two source oils. A linear discriminatory analysis model showed that nine different petroleum products could be reproducibly discriminated using these bicyclane ratios. The model was then used to correctly identify the bicyclane profiles of each of the two exposure oils in the adipose tissue extracts of each of the 18 fish fed oil-enriched diets. From our initial study, bicyclane biomarkers appear to show good potential for providing reliable forensic fingerprints of the sources of oil contamination of exposed fish. Further research is needed to investigate the minimum exposure times required for bicyclane bioaccumulation to achieve detectable concentrations in fish adipose tissues and to determine bicyclane depuration rates once exposure to oil has ceased. Environ Toxicol Chem 2023;42:7-18. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Contaminantes Ambientales , Perciformes , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Petróleo/análisis , Contaminantes Ambientales/análisis , Australia , Contaminación por Petróleo/análisis , Aceites , Biomarcadores , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 799: 149335, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371400

RESUMEN

The Kimberley region of Western Australia is a National Heritage listed region that is internationally recognised for its environmental and cultural significance. However, petroleum spills have been reported at a number of sites across the region, representing an environmental concern. The region is also characterised as having low soil nutrients, high temperatures and monsoonal rain - all of which may limit the potential for natural biodegradation of petroleum. Therefore, this work evaluated the effect of legacy petroleum hydrocarbons on the indigenous soil microbial community (across the domains Archaea, Bacteria and Fungi) at three sites in the Kimberley region. At each site, soil cores were removed from contaminated and control areas and analysed for total petroleum hydrocarbons, soil nutrients, pH and microbial community profiling (using16S rRNA and ITS sequencing on the Illumina MiSeq Platform). The presence of petroleum hydrocarbons decreased microbial diversity across all kingdoms, altered the structure of microbial communities and increased the abundance of putative hydrocarbon degraders (e.g. Mycobacterium, Acremonium, Penicillium, Bjerkandera and Candida). Microbial community shifts from contaminated soils were also associated with an increase in soil nutrients (notably Colwell P and S). Our study highlights the long-term effect of legacy hydrocarbon spills on soil microbial communities and their diversity in remote, infertile monsoonal soils, but also highlights the potential for natural attenuation to occur in these environments.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
4.
Sci Total Environ ; 662: 963-977, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30795483

RESUMEN

Groundwaters provide the vast majority of unfrozen freshwater resources on the planet, but our knowledge of subsurface ecosystems is surprisingly limited. Stygofauna, or stygobionts -subterranean obligate aquatic animals - provide ecosystem services such as grazing biofilms and maintaining water quality, but we know little about how their ecosystems function. The cryptic nature of groundwaters, together with the high degree of local endemism and stygofaunal site-specific adaptations, represent major obstacles for the field. To overcome these challenges, and integrate biodiversity and ecosystem function, requires a holistic design drawing on classical ecology, taxonomy, molecular ecology and geochemistry. This study presents an approach based on the integration of existing concepts in groundwater ecology with three more novel scientific techniques: compound specific stable isotope analysis (CSIA) of amino acids, radiocarbon analysis (14C) and DNA analyses of environmental samples, stygofauna and gut contents. The combination of these techniques allows elucidation of aspects of ecosystem function that are often obscured in small invertebrates and cryptic systems. Carbon (δ13C) and nitrogen (δ15N) CSIA provides a linkage between biogeochemical patterns and ecological dynamics. It allows the identification of stygofaunal food web structures and energy flows based on the metabolic pathway of specific amino groups. Concurrently, 14C provides complementary data on the carbon recycling and incorporation within the stygobiotic trophic webs. Changes in groundwater environmental conditions (e.g. aquifer recharge), and subsequent community adaptations, can be pinpointed via the measurementof the radiocarbon fingerprint of water, sediment and specimens. DNA analyses are a rapidly expanding approach in ecology. eDNA is mainly employed as a biomonitoring tool, while metabarcoding of individuals and/or gut contents provides insight into diet regimes. In all cases, the application of the approaches in combination provides more powerful data than any one alone. By combining quantitative (CSIA and 14C) and qualitative (eDNA and DNA metabarcoding) approaches via Bayesian Mixing Models (BMM), linkages can be made between community composition, energy and nutrient sources in the system, and trophic function. This suggested multidisciplinary design will contribute to a more thorough comprehension of the biogeochemical and ecological patterns within these undervalued but essential ecosystems.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Ecología/métodos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Agua Subterránea/normas , Animales , Organismos Acuáticos/clasificación , Biodiversidad , Isótopos de Carbono/análisis , Agua Subterránea/química , Isótopos de Nitrógeno/análisis
5.
Food Chem ; 135(2): 787-98, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22868160

RESUMEN

Smoke taint in wines from bushfire smoke exposure has become a concern for wine producers. Smoke taint compounds are primarily derived from pyrolysis of the lignin component of fuels. This work examined the influence of the lignin composition of pyrolysed vegetation on the types of putative smoke taint compounds that accrue in wines. At veraison, Merlot vines were exposed to smoke generated from five vegetation types with differing lignin composition. Smoke was generated under pyrolysis conditions that simulated bushfire temperature profiles. Lignin and smoke composition of each fuel type along with putative smoke taint compounds in wines were determined. The results showed that, regardless of fuel type, the commonly reported guaiacyl lignin derived smoke taint compounds, guaiacol and 4-methylguaiacol, represented about 20% of the total phenols in wines. Quantitatively, syringyl lignin derived compounds dominated the total phenol pools in both free and bound forms. The contributions of p-hydroxyphenyls were generally similar to the guaiacyl sources. A further unexpected outcome of the study was that pine smoke affected wines had significantly elevated levels of syringols compared to the controls although pine fuel and its smoke emission lacked syringyl products.


Asunto(s)
Lignina/química , Preparaciones de Plantas/química , Humo/análisis , Vitis/química , Vino/análisis , Fenoles/química
6.
J Chromatogr A ; 1218(32): 5549-53, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21737090

RESUMEN

18α(H)-, 18ß(H)-oleanane and lupane are angiosperm-derived biomarkers that are used as age indicators for the Late Cretaceous onwards when the first proliferation of angiosperms occurred. In addition, the 18α(H)-/18ß(H)-oleanane ratio is employed as a thermal maturity parameter of crude oil. However, evidence has shown that accurate quantification of these compounds has been impeded by inadequate chromatographic separation by traditional one-dimensional gas chromatography. In this study, we present the separation of 18α(H)-, 18ß(H)-oleanane and lupane with comprehensive two-dimensional gas chromatography (GC×GC). Furthermore, it was observed that 18ß(H)-oleanane elutes earlier than 18α(H)-oleanane in second dimension (polarity) which we attribute to steric hindrance effects. Two GC conditions have been developed in order to achieve baseline separation of the triterpenoids of interest in complex mixtures such as sediment extracts and crude oils.


Asunto(s)
Cromatografía de Gases/métodos , Magnoliopsida/química , Ácido Oleanólico/análogos & derivados , Triterpenos/química , Isomerismo , Estructura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Petróleo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA