Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Redox Biol ; 9: 188-197, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27566282

RESUMEN

BACKGROUND: Mitochondrial dysfunction and bioenergetic stress play an important role in the etiology of alcoholic liver disease. Previous studies from our laboratory show that the primary methyl donor S-Adenosylmethionine (SAM) minimizes alcohol-induced disruptions in several mitochondrial functions in the liver. Herein, we expand on these earlier observations to determine whether the beneficial actions of SAM against alcohol toxicity extend to changes in the responsiveness of mitochondrial respiration to inhibition by nitric oxide (NO), induction of the mitochondrial permeability transition (MPT) pore, and the hypoxic state of the liver. METHODS: For this, male Sprague-Dawley rats were pair-fed control and alcohol-containing liquid diets with and without SAM for 5 weeks and liver hypoxia, mitochondrial respiration, MPT pore induction, and NO-dependent control of respiration were examined. RESULTS: Chronic alcohol feeding significantly enhanced liver hypoxia, whereas SAM supplementation attenuated hypoxia in livers of alcohol-fed rats. SAM supplementation prevented alcohol-mediated decreases in mitochondrial state 3 respiration and cytochrome c oxidase activity. Mitochondria isolated from livers of alcohol-fed rats were more sensitive to calcium-mediated MPT pore induction (i.e., mitochondrial swelling) than mitochondria from pair-fed controls, whereas SAM treatment normalized sensitivity for calcium-induced swelling in mitochondria from alcohol-fed rats. Liver mitochondria from alcohol-fed rats showed increased sensitivity to NO-dependent inhibition of respiration compared with pair-fed controls. In contrast, mitochondria isolated from the livers of SAM treated alcohol-fed rats showed no change in the sensitivity to NO-mediated inhibition of respiration. CONCLUSION: Collectively, these findings indicate that the hepato-protective effects of SAM against alcohol toxicity are mediated, in part, through a mitochondrial mechanism involving preservation of key mitochondrial bioenergetic parameters and the attenuation of hypoxic stress.


Asunto(s)
Hígado Graso Alcohólico/metabolismo , Hipoxia/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Biogénesis de Organelos , S-Adenosilmetionina/metabolismo , Animales , Biomarcadores , Respiración de la Célula , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Etanol/efectos adversos , Etanol/metabolismo , Hígado Graso Alcohólico/patología , Hígado/efectos de los fármacos , Hígado/patología , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Óxido Nítrico/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , S-Adenosilmetionina/farmacología
2.
PLoS One ; 8(6): e68348, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840849

RESUMEN

Solid tumors are characterized by regions of low oxygen tension (OT), which play a central role in tumor progression and resistance to therapy. Low OT affects mitochondrial function and for the cells to survive, mitochondria must functionally adapt to low OT to maintain the cellular bioenergetics. In this study, a novel experimental approach was developed to examine the real-time bioenergetic changes in breast cancer cells (BCCs) during adaptation to OT (from 20% to <1% oxygen) using sensitive extracellular flux technology. Oxygen was gradually removed from the medium, and the bioenergetics of metastatic BCCs (MDA-MB-231 and MCF10CA clones) was compared with non-tumorigenic (MCF10A) cells. BCCs, but not MCF10A, rapidly responded to low OT by stabilizing HIF-1α and increasing HIF-1α responsive gene expression and glucose uptake. BCCs also increased extracellular acidification rate (ECAR), which was markedly lower in MCF10A. Interestingly, BCCs exhibited a biphasic response in basal respiration as the OT was reduced from 20% to <1%. The initial stimulation of oxygen consumption is found to be due to increased mitochondrial respiration. This effect was HIF-1α-dependent, as silencing HIF-1α abolished the biphasic response. During hypoxia and reoxygenation, BCCs also maintained oxygen consumption rates at specific OT; however, HIF-1α silenced BCC were less responsive to changes in OT. Our results suggest that HIF-1α provides a high degree of bioenergetic flexibility under different OT which may confer an adaptive advantage for BCC survival in the tumor microenvironment and during invasion and metastasis. This study thus provides direct evidence for the cross-talk between HIF-1α and mitochondria during adaptation to low OT by BCCs and may be useful in identifying novel therapeutic agents that target the bioenergetics of BCCs in response to low OT.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Metabolismo Energético/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mitocondrias/patología , Mitocondrias/fisiología , Metástasis de la Neoplasia/fisiopatología , Oxígeno/metabolismo , Adaptación Biológica/genética , Adaptación Biológica/fisiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Respiración de la Célula/genética , Respiración de la Célula/fisiología , Metabolismo Energético/genética , Femenino , Glucosa/metabolismo , Glucólisis/genética , Glucólisis/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Metástasis de la Neoplasia/genética , Consumo de Oxígeno/genética , Consumo de Oxígeno/fisiología
3.
Curr Pharm Des ; 17(23): 2421-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21827418

RESUMEN

Cancer metabolism has gained considerable interest, since significant studies have indicated a close relationship between the activation of various oncogenes and alterations of cellular metabolism. Furthermore, several lines of evidence have shown that metabolic imaging can significantly impact malignant glioma patient management and monitoring of tumor response to therapy. In this context, mitochondria play a central role in cellular energy production, apoptosis and free radical generation. Mitochondrial malfunctions have been associated with development of many cancers, including brain tumors. Glioblastoma multiforme (GBM) is the most common primary intracranial neoplasm and its almost uniform lethality is exemplified by a median survival of 12-15 months. Current management consists of a combination of surgery, radiotherapy and chemotherapy. Despite aggressive treatment approaches, recurrence occurs in 90% of GBM patients. One cause of this poor outcome is development of a multidrug-resistance (MDR) phenotype. We and others have described in detail the bioenergetic pathways central to glioma growth and progression. One of the most striking observations is that glioma cells which rely on glycolytic metabolism readily adapt to bioenergetic stress by engaging their mitochondrial pathway in order to survive and grow. This suggests that mitochondrial function plays a critical role in the biology of gliomas. Still, the role that mitochondrial function has in development of chemoresistance in malignant brain tumors is largely unknown. Our goal in this review is to describe the current knowledge on the role of mitochondria function in the development of chemoresistance in glioma. Particular emphasis will be on ABC transporters. We will discuss the significance of these research areas in the context of development of more effective, targeted therapeutic modalities and diagnostic strategies for malignant glioma patients.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos , Metabolismo Energético/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Mitocondrias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , ADN Mitocondrial/genética , Resistencia a Antineoplásicos/genética , Metabolismo Energético/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glucosa/metabolismo , Humanos , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo
4.
PLoS One ; 3(11): e3655, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18985161

RESUMEN

Mitochondria dysfunction and hypoxic microenvironment are hallmarks of cancer cell biology. Recently, many studies have focused on isolation of brain cancer stem cells using CD133 expression. In this study, we investigated whether CD133 expression is regulated by bioenergetic stresses affecting mitochondrial functions in human glioma cells. First, we determined that hypoxia induced a reversible up-regulation of CD133 expression. Second, mitochondrial dysfunction through pharmacological inhibition of the Electron Transport Chain (ETC) produced an up-regulation of CD133 expression that was inversely correlated with changes in mitochondrial membrane potential. Third, generation of stable glioma cells depleted of mitochondrial DNA showed significant and stable increases in CD133 expression. These glioma cells, termed rho(0) or rho(0), are characterized by an exaggerated, uncoupled glycolytic phenotype and by constitutive and stable up-regulation of CD133 through many cell passages. Moreover, these rho(0) cells display the ability to form "tumor spheroids" in serumless medium and are positive for CD133 and the neural progenitor cell marker, nestin. Under differentiating conditions, rho(0) cells expressed multi-lineage properties. Reversibility of CD133 expression was demonstrated by transfering parental mitochondria to rho(0) cells resulting in stable trans-mitochondrial "cybrid" clones. This study provides a novel mechanistic insight about the regulation of CD133 by environmental conditions (hypoxia) and mitochondrial dysfunction (genetic and chemical). Considering these new findings, the concept that CD133 is a marker of brain tumor stem cells may need to be revised.


Asunto(s)
Antígenos CD/fisiología , Biomarcadores de Tumor/fisiología , Neoplasias Encefálicas/genética , Metabolismo Energético/genética , Glioma/genética , Glicoproteínas/fisiología , Péptidos/fisiología , Estrés Fisiológico/genética , Antígeno AC133 , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Hipoxia de la Célula/genética , ADN Mitocondrial/fisiología , Metabolismo Energético/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Modelos Biológicos , Células Madre Neoplásicas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Rotenona/farmacología , Estrés Fisiológico/efectos de los fármacos , Células Tumorales Cultivadas , Desacopladores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA