Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inflammopharmacology ; 32(1): 149-228, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212535

RESUMEN

Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-ß, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.


Asunto(s)
Terapias Complementarias , Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/tratamiento farmacológico , Cicatrización de Heridas , Citocinas/metabolismo , Inflamación
2.
Chem Biodivers ; 20(8): e202300719, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37312449

RESUMEN

In hepatic cancer, precancerous nodules account for damage and inflammation in liver cells. Studies have proved that phyto-compounds based on biosynthetic metallic nanoparticles display superior action against hepatic tumors. This study targeted the synthesis of genistein-fortified zinc ferrite nanoparticles (GENP) trailed by anticancer activity assessment against diethylnitrosamine and N-acetyl-2-aminofluorene induced hepatic cancer. The process of nucleation was confirmed by UV/VIS spectrophotometry, X-ray beam diffraction, field-emission scanning electron microscopy, and FT-IR. An in vitro antioxidant assay illustrated that the leaves of Pterocarpus mildbraedii have strong tendency as a reductant and, in the nanoformulation synthesis, as a natural capping agent. A MTT assay confirmed that GENP have a strong selective cytotoxic potential against HepG2 cancer cells. In silico studies of genistein exemplified the binding tendency towards human matrix metalloproteinase comparative to the standard drug marimastat. An in vivo anticancer evaluation showed that GENP effectively inhibit the growth of hepatic cancer by interfering with hepatic and non-hepatic biochemical markers.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas del Metal , Humanos , Zinc , Genisteína/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas del Metal/química , Extractos Vegetales/química , Difracción de Rayos X , Tecnología Química Verde , Antibacterianos/farmacología
3.
Chem Biodivers ; 19(9): e202200200, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35950335

RESUMEN

Diabetes mellitus is a typical life threatening of disease, which generate due to the dysfunction of ß cells of pancreas. In 2014, WHO stated that 422 million people were infected with DM. The current pattern of management of diabetes included synthetic or plant based oral hypoglycemic drugs and insulin but drug resentence is become a very big issues in antidiabetic therapy. Thus, it's very earnest to discover now medication for this disease. Now the days, it is well acknowledged that diabetic patients are more prone towards covid and related complications. Thus, medical practitioners reformed the methodology of prescribing medication for covid infected antidiabetic therapy and encouraging the medication contains dual pharmacological properties. It is also well know that polyphenols specifically hold a significant role in oxidative stress and reduced the severity of many inflammatory diseases. Cucumis melo has rich history as ethano-pharmacological use in Indian subcontinent. The fruit and seed are well-known for the treatment of various diseases due to the presence of phenolics. Therefore, in this study, the combined mixture of flower and seeds were used for the extraction of polyphenolic rich extract and tested for antidiabetic activity through the antioxidant and in vivo experiments. The antioxidant potential measurement exhibited that the selected plant extract has the significant competence to down-regulate oxidative stress (DPPH scavenging IC50 at 60.7±1.05 µg/mL, ABTS IC50 at 62.15±0.50 µg/mL). Furthermore, the major polyphenolic phyto-compounds derived from the Cucumis melo were used for in silico anticovid activity, docking, and complementarity studies. The anticovid activity prognosis reflected that selected phyto-compounds amentoflavone and vanillic acid have optimal possibility to interact with 3C-like protease and through this moderate anticovid activity can be exhibit. The docking experiments established that the selected compounds have propensity to interact with protein tyrosine phosphatase 1B, 11ß-Hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, and catalase ß-glucuronidase receptor. In vivo experiments showed that 500 mg/kg, Cucumis melo extract ominously amplified body weight, plasma insulin, high-density lipoprotein levels, and biochemical markers. Furthermore, extract significantly downregulate the blood glucose, total cholesterol, triglycerides, low-density lipoprotein, and very low-density lipoprotein.


Asunto(s)
COVID-19 , Cucumis melo , Diabetes Mellitus Experimental , Momordica , 11-beta-Hidroxiesteroide Deshidrogenasas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Biomarcadores , Glucemia , Catalasa/metabolismo , Colesterol , Cucumis melo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucuronidasa , Glutatión Peroxidasa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina , Lipoproteínas HDL/uso terapéutico , Lipoproteínas LDL/uso terapéutico , Momordica/metabolismo , Péptido Hidrolasas , Extractos Vegetales/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Superóxido Dismutasa/metabolismo , Triglicéridos , Ácido Vanílico
4.
PeerJ ; 10: e13374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673392

RESUMEN

Exploring potent herbal medicine candidates is a promising strategy for combating a pandemic in the present global health crisis. In Ayurveda (a traditional medicine system in India), Withania somnifera (WS) is one of the most important herbs and it has been used for millennia as Rasayana (a type of juice) for its wide-ranging health benefits. WS phytocompounds display a broad spectrum of biological activities (such as antioxidant, anticancer and antimicrobial) modulate detoxifying enzymes, and enhance immunity. Inspired by the numerous biological actions of WS phytocompounds, the present investigation explored the potential of the WS phytocompounds against the SARS-CoV-2 main protease (3CLpro). We selected 11 specific withanolide compounds, such as withaphysalin, withasomniferol, and withafastuosin, through manual literature curation against 3CLpro. A molecular similarity analysis showed their similarity with compounds that have an established inhibitory activity against the SARS-CoV-2. In silico molecular docking and molecular dynamics simulations elucidated withasomniferol C (WS11) as a potential candidate against SARS-CoV-2 3CLpro. Additionally, the present work also presents a new method of validating docking poses using the AlteQ method.


Asunto(s)
COVID-19 , Withania , SARS-CoV-2 , Simulación del Acoplamiento Molecular
5.
Curr Med Chem ; 25(29): 3526-3537, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29521207

RESUMEN

Various techniques for rational drug design are presented in the paper. The methods are based on a substitution of antipharmacophore atoms of the molecules of training dataset by new atoms and/or group of atoms increasing the atomic bioactivity increments obtained from an SAR study. Furthermore, a design methodology based on the genetic algorithm DesPot for discrete optimization and generation of new drug candidate structures is described. Additionally, wide spectra of SAR approaches (3D/4D QSAR interior and exterior-based methods - BiS, CiS, ConGO, CoMIn, high-quality docking method - ReDock) using MERA force field and/or AlteQ quantum chemical method for correct prognosis of bioactivity and the bioactive probability have been described. The design methods are implemented at www.chemosophia.com web-site for online computational services.


Asunto(s)
Simulación por Computador , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Algoritmos , Simulación del Acoplamiento Molecular , Estructura Molecular , Teoría Cuántica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA