Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Sci ; 344: 112079, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588981

RESUMEN

The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of ß-pore-forming toxins (ß-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Gossypium , Proteínas Hemolisinas , Larva , Plantas Modificadas Genéticamente , Gorgojos , Gossypium/genética , Gossypium/parasitología , Animales , Gorgojos/genética , Plantas Modificadas Genéticamente/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Larva/efectos de los fármacos , Bacillus thuringiensis/genética , Control Biológico de Vectores
2.
Molecules ; 26(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065427

RESUMEN

Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years. In Brazilian folk medicine, plant extracts from the bamboo plant Guadua paniculata Munro have been used for the treatment of infections and pain. However, the chemical basis of these therapeutic effects has not yet been identified. Here, we performed protein biochemistry and downstream pharmacological assays to determine the mechanisms underlying the anti-inflammatory and antinociceptive effects of an aqueous extract of the G. paniculata rhizome, which we termed AqGP. The anti-inflammatory and antinociceptive effects of AqGP were assessed in mice. We identified and purified a protein (AgGP), with an amino acid sequence similar to that of thaumatins (~20 kDa), capable of repressing inflammation through downregulation of neutrophil recruitment and of decreasing hyperalgesia in mice. In conclusion, we have identified the molecule and the molecular mechanism responsible for the anti-inflammatory and antinociceptive properties of a plant commonly used in Brazilian folk medicine.


Asunto(s)
Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Bambusa/química , Extractos Vegetales/uso terapéutico , Secuencia de Aminoácidos , Analgésicos/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Células MCF-7 , Masculino , Ratones , Células 3T3 NIH , Extractos Vegetales/administración & dosificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Mol Genet Genomics ; 295(4): 1063-1078, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32333171

RESUMEN

Root-knot nematodes (RKNs, genus Meloidogyne) affect a large number of crops causing severe yield losses worldwide, more specifically in tropical and sub-tropical regions. Several plant species display high resistance levels to Meloidogyne, but a general view of the plant immune molecular responses underlying resistance to RKNs is still lacking. Combining comparative genomics with differential gene expression analysis may allow the identification of widely conserved plant genes involved in RKN resistance. To identify genes that are evolutionary conserved across plant species, we used OrthoFinder to compared the predicted proteome of 22 plant species, including important crops, spanning 214 Myr of plant evolution. Overall, we identified 35,238 protein orthogroups, of which 6,132 were evolutionarily conserved and universal to all the 22 plant species (PLAnts Common Orthogroups-PLACO). To identify host genes responsive to RKN infection, we analyzed the RNA-seq transcriptome data from RKN-resistant genotypes of a peanut wild relative (Arachis stenosperma), coffee (Coffea arabica L.), soybean (Glycine max L.), and African rice (Oryza glaberrima Steud.) challenged by Meloidogyne spp. using EdgeR and DESeq tools, and we found 2,597 (O. glaberrima), 743 (C. arabica), 665 (A. stenosperma), and 653 (G. max) differentially expressed genes (DEGs) during the resistance response to the nematode. DEGs' classification into the previously characterized 35,238 protein orthogroups allowed identifying 17 orthogroups containing at least one DEG of each resistant Arachis, coffee, soybean, and rice genotype analyzed. Orthogroups contain 364 DEGs related to signaling, secondary metabolite production, cell wall-related functions, peptide transport, transcription regulation, and plant defense, thus revealing evolutionarily conserved RKN-responsive genes. Interestingly, the 17 DEGs-containing orthogroups (belonging to the PLACO) were also universal to the 22 plant species studied, suggesting that these core genes may be involved in ancestrally conserved immune responses triggered by RKN infection. The comparative genomic approach that we used here represents a promising predictive tool for the identification of other core plant defense-related genes of broad interest that are involved in different plant-pathogen interactions.


Asunto(s)
Productos Agrícolas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Tylenchoidea/patogenicidad , Animales , Arachis/genética , Arachis/parasitología , Café/genética , Café/parasitología , Productos Agrícolas/parasitología , Regulación de la Expresión Génica de las Plantas/genética , Genómica , Genotipo , Interacciones Huésped-Patógeno/genética , Oryza/genética , Oryza/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/genética , Glycine max/genética , Glycine max/parasitología , Tylenchoidea/genética
4.
Plant Biotechnol J ; 17(10): 1868-1891, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30908823

RESUMEN

Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20-fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource-limited setting because plant-made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti-TB therapy (ATT), including drug interactions, drug-related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant-made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.


Asunto(s)
Infecciones por VIH/complicaciones , Fitoterapia , Plantas Medicinales , Tuberculosis/complicaciones , Fármacos Anti-VIH/farmacología , Antituberculosos/farmacología , Infecciones por VIH/microbiología , Humanos , Mycobacterium tuberculosis , Tuberculosis/virología
5.
J Biotechnol ; 167(4): 377-85, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23892157

RESUMEN

Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 108 α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control.


Asunto(s)
Evolución Molecular Dirigida , Inhibidores Enzimáticos/metabolismo , Gossypium , Gorgojos/enzimología , alfa-Amilasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Técnicas de Visualización de Superficie Celular , Barajamiento de ADN , Inhibidores Enzimáticos/farmacología , Variación Genética , Control de Insectos , Datos de Secuencia Molecular , Extractos Vegetales/genética , Extractos Vegetales/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de Proteína , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
6.
Phytochemistry ; 67(18): 2009-16, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16901522

RESUMEN

Plant alpha-amylase inhibitors are proteins found in several plants, and play a key role in natural defenses. In this study, a gene encoding an alpha-amylase inhibitor, named alphaAI-Pc1, was isolated from cotyledons of Phaseolus coccineus. This inhibitor has an enhanced primary structure to P. vulgaris alpha-amylase inhibitors (alpha-AI1 and alpha-AI2). The alphaAI-Pc1 gene, constructed with the PHA-L phytohemaglutinin promoter, was introduced into tobacco plants, with its expression in regenerated (T0) and progeny (T1) transformant plants monitored by PCR amplification, enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis, respectively. Seed protein extracts from selected transformants reacted positively with a polyclonal antibody raised against alphaAI-1, while no reaction was observed with untransformed tobacco plants. Immunological assays showed that the alphaAI-Pc1 gene product represented up to 0.05% of total soluble proteins in T0 plants seeds. Furthermore, recombinant alphaAI-Pc1 expressed in tobacco plants was able to inhibit 65% of digestive H. hampei alpha-amylases. The data herein suggest that the protein encoded by the alphaAI-Pc1 gene has potential to be introduced into coffee plants in order to increase their resistance to the coffee berry borer.


Asunto(s)
Nicotiana/genética , Phaseolus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , alfa-Amilasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Café/parasitología , Cotiledón/química , Inhibidores Enzimáticos/metabolismo , Vectores Genéticos , Datos de Secuencia Molecular , Control Biológico de Vectores/métodos , Phaseolus/química , Plantas Modificadas Genéticamente , Plásmidos , Proteínas Recombinantes/genética , Gorgojos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA