Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 27(5): 2841-2856, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27178193

RESUMEN

A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Células Madre/fisiología , Tálamo/citología , Tálamo/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Embrión de Mamíferos , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Embarazo , Receptores de Glutamato Metabotrópico/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(29): E2996-3004, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002511

RESUMEN

Celsr3 and Fzd3, members of "core planar cell polarity" (PCP) genes, were shown previously to control forebrain axon guidance and wiring by acting in axons and/or guidepost cells. Here, we show that Celsr2 acts redundantly with Celsr3, and that their combined mutation mimics that of Fzd3. The phenotypes generated upon inactivation of Fzd3 in different forebrain compartments are similar to those in conditional Celsr2-3 mutants, indicating that Fzd3 and Celsr2-3 act in the same population of cells. Inactivation of Celsr2-3 or Fzd3 in thalamus does not affect forebrain wiring, and joint inactivation in cortex and thalamus adds little to cortical inactivation alone in terms of thalamocortical projections. On the other hand, joint inactivation perturbs strongly the formation of the barrel field, which is unaffected upon single cortical or thalamic inactivation, indicating a role for interactions between thalamic axons and cortical neurons in cortical arealization. Unexpectedly, forebrain wiring is normal in mice defective in Vangl1 and Vangl2, showing that, contrary to epithelial PCP, axon guidance can be Vangl independent in some contexts. Our results suggest that Celsr2-3 and Fzd3 regulate axonal navigation in the forebrain by using mechanisms different from classical epithelial PCP, and require interacting partners other than Vangl1-2 that remain to be identified.


Asunto(s)
Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Receptores Frizzled/metabolismo , Proteínas de la Membrana/metabolismo , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Prosencéfalo/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral/metabolismo , Silenciador del Gen , Integrasas/metabolismo , Ratones , Mutación/genética , Fenotipo , Tálamo/metabolismo
3.
Neuron ; 77(3): 472-84, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23395374

RESUMEN

Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.


Asunto(s)
Corteza Cerebral/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Factores de Edad , Animales , Axones/fisiología , Tipificación del Cuerpo/genética , Calbindina 2 , Corteza Cerebral/citología , Contactina 2/metabolismo , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas/genética , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intracelular , Complejo de Antígeno L1 de Leucocito/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Factores del Dominio POU/genética , Proteínas Represoras/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Semaforinas , Proteínas de Dominio T Box , Tálamo/citología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína Wnt3A/genética , Proteínas tau/genética
4.
Neuron ; 48(4): 522-4, 2005 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-16301165

RESUMEN

Normal brain function requires the development of precise connections between thalamus and cerebral cortex. In this issue of Neuron, Cang et al. and Tori and Levitt argue that EphA/ephrin-A signaling in the target tissue guides sensory thalamic axons to the correct cortical area, and sensory cortical axons to precise thalamic targets. Although EphA/ephrin-A signaling organizes sensory maps within areas, and thalamocortical axons in the internal capsule, both papers argue that each developmental event is dissociable from the others.


Asunto(s)
Axones/fisiología , Corteza Cerebral/fisiología , Tálamo/fisiología , Animales , Efrinas/metabolismo , Vías Nerviosas/fisiología , Neuronas Aferentes/fisiología , Transducción de Señal/fisiología
5.
J Neurosci ; 25(28): 6550-60, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16014716

RESUMEN

Thalamic innervation of each neocortical area is vital to cortical function, but the developmental strategies that guide axons to specific areas remain unclear. We took a new approach to determine the contribution of intracortical cues. The cortical patterning molecule fibroblast growth factor 8 (FGF8) was misexpressed in the cortical primordium to rearrange the area map. Thalamic axons faithfully tracked changes in area position and innervated duplicated somatosensory barrel fields induced by an ectopic source of FGF8, indicating that thalamic axons indeed use intracortical positional information. Because cortical layers are generated in temporal order, FGF8 misexpression at different ages could be used to shift regional identity in the subplate and cortical plate either in or out of register. Thalamic axons showed strikingly different responses in the two different conditions, disclosing sources of positional guidance in both subplate and cortical plate. Unexpectedly, axon trajectories indicated that an individual neocortical layer could provide not only laminar but also area-specific guidance. Our findings demonstrate that thalamocortical axons are directed by sequential, positional cues within the cortex and implicate FGF8 as an indirect regulator of thalamocortical innervation.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/fisiología , Tálamo/embriología , Animales , Axones/ultraestructura , Electroporación , Factor 8 de Crecimiento de Fibroblastos/genética , Genes Reporteros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Inyecciones Intraventriculares , Ratones , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/fisiología , Proteínas Recombinantes de Fusión/fisiología , Corteza Somatosensorial/embriología , Corteza Somatosensorial/crecimiento & desarrollo , Telencéfalo/embriología , Telencéfalo/crecimiento & desarrollo , Tálamo/crecimiento & desarrollo , Transfección , Vibrisas/inervación
6.
Annu Rev Neurosci ; 26: 355-80, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14527269

RESUMEN

The view that the cortical primordium is initially patterned in similar ways to the rest of the embryo has been a conceptual breakthrough. We now have a new starting point for understanding how the cortical area map is established and how maps may change and evolve. Here we review findings that signaling molecules secreted from distinct cortical signaling centers establish positional information in the cortical primordium and regulate regional growth. In other embryonic systems, positional signals would regulate the patterned expression of transcription factors, leading, in a gene regulatory cascade, to the patterned differentiation of the tissue. We discuss candidate transcription factors with respect to such a model of cortical patterning. Finally, embryonic structures interact to pattern one another. We review data suggesting that the thalamus and cortex are patterned independently then interact to generate the final cortical area map.


Asunto(s)
Tipificación del Cuerpo/fisiología , Corteza Cerebral/fisiología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/fisiología , Proteínas de Pez Cebra , Animales , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Transgénicos , Modelos Neurológicos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Especificidad de la Especie , Tálamo/anatomía & histología , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA