Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 241: 117597, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939808

RESUMEN

Since the 2007 water crisis occurred in Lake Taihu, substantial measures have been taken to restore the lake. This study evaluates the effectiveness of these restoration activities. We examined the physicochemical parameters and the distribution of microcystin and Microcystis in both the water column and sediment during the bloom period of May 2020 to October 2020. The mean value of extracellular and intracellular microcystin content was 0.12 µg L-1 and 16.26 µg L-1, respectively. The mean value of microcystin in sediment was 172.02 ng g-1 and peaked in August. The concentration in the water and sediment was significantly lower than the historical average concentration. The abundance of toxigenic Microcystis and total Microcystis in the water column ranged from 2.61 × 102 to 2.25 × 109 copies·L-1 and 8.28 × 105 to 2.76 × 109 copies·L-1, respectively. The proportion of toxic Microcystis in the sediment ranging from 31.2% to 19.12%. The highest and lowest region was Meiliang Bay and Grass-algae type zone, respectively. The copy number of the 16S rRNA gene was 1-4 orders of magnitude higher than that of mcyA gene in populations of Microcystis, indicating that non-toxic Microcystis was the dominant form in the majority of the lake. The abundance of toxic Microcystis in the water column was positively correlated with total phosphorus, PO43--P and pH, while the water temperature played distinct role to the distribution of toxic Microcystis in sediment. Our research indicated phosphorus remains a key factor influencing the toxic Microcystis and microcystins in the water column. pH played distinct roles in the distribution of microcystins in sediment and water column. The increasing water temperature is a threat. Explicit management actions and policies, which take into account nutrient concentrations, pH, and increasing temperatures, are necessary to understand and control the distribution of microcystin and Microcystis in Lake Taihu.


Asunto(s)
Agua Potable , Microcystis , Lagos/química , Microcistinas , ARN Ribosómico 16S/genética , Microcystis/genética , Fósforo/análisis , China
2.
PLoS One ; 7(11): e49460, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185336

RESUMEN

BACKGROUND: High serum levels of lipopolysaccharide (LPS) with LPS-MD-2/TLR4 complex activated NF-kb and cytokine cause hepatic necrosis in animal models. We investigated the dynamic changes of LPS levels in patients with acute on chronic hepatitis B liver failure (ACHBLF). METHODS: We enrolled ACHBLF patients for a 12-week study. Patients' LPS levels were measured along with 10 healthy controls. Patients on supportive care and recovered without intervention(s) were analyzed. Patients' LPS levels during the disease progression phase, peak phase, and remission phase were compared with healthy controls. RESULTS: Among 30 patients enrolled, 25 who received interventions or expired during the study period were excluded from the analysis, five patients on supportive care who completed the study were analyzed. Significant abnormal distributions of LPS levels were observed in patients in different phases (0.0168±0.0101 in progression phase; 0.0960±0.0680 in peak phase; 0.0249±0.0365 in remission phase; and 0.0201±0.0146 in controls; respectively, p<0.05). The highest level of LPS was in the peak phase and significantly elevated when compared to controls (0.0201±0.0146 vs. 0.0960±0.0680, p = 0.007). There were no statistically significant differences in LPS levels between healthy controls and subjects in the progression phase or remission phase. Dynamic changes of LPS were correlated with MELD-Na in the progression phase (p = 0.01, R = 0.876) and in the peak phase (p = 0.000, R = -1.00). CONCLUSIONS: Significant abnormal distributions of LPS levels were observed in ACHBLF with the highest level in the peak phase. The dynamic changes of LPS were correlated with disease severity and suggested LPS causing secondary hepatic injury.


Asunto(s)
Hepatitis B Crónica/metabolismo , Lipopolisacáridos/metabolismo , Fallo Hepático Agudo/virología , Tálamo/metabolismo , Animales , Mapeo Encefálico/métodos , Modelos Animales de Enfermedad , Electrodos , Retroalimentación , Hígado/patología , Fallo Hepático Agudo/metabolismo , Masculino , Neuronas/metabolismo , Oscilometría/métodos , Corteza Prefrontal/fisiología , Ratas , Ratas Long-Evans , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA