Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 202: 107991, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37660606

RESUMEN

High temperature (HT) stress at reproductive stage is one of most important environment negatively affecting spikelet fertility and rice yield. In this study, the effect of HT exposure on the sugar composition and carbohydrate metabolism in developing anthers and its relation to floret fertility and pollen viability were investigated by different temperature regimes under well-controlled climatic condition. Result showed that HT exposure during microspore development significantly reduced the starch deposition in developing anther and evidently disrupted the spatial distribution of sugar and starch concentrations in different compartments of rice anther, with the higher ratio of sucrose to hexose concentrations in HT-stressed anthers relative to the control ones. Under HT exposure, the amount of starch deposition in the fraction of sporophytic tissues dropped evidently, while the concentrations of sucrose and starch in anther wall tissue enhanced significantly, suggesting that HT exposure impaired the translocation of sucrose from the anther wall tissue to the sporophytic tissues inside rice anther. Furthermore, we presented possible contribution of various genes and key enzymes involving in sugar conversion and carbohydrate metabolism in developing anther to the formation of HT-induced pollen abortion by disrupting the sugar utilization in HT-stressed anther. HT exposure suppressed the activities of cell wall and vacuolar invertase, hexokinase, and ADP-glucose pyrophosphorylase in developing anther, while it was opposite for the effect of HT exposure on sucrose synthase and fructokinase. HT-induced suppression of OsCWIN3 in the anther walls might be strongly responsible for the HT-induced impairments of sugar utilization in HT-stressed anthers.


Asunto(s)
Oryza , Femenino , Embarazo , Humanos , Metabolismo de los Hidratos de Carbono , Pared Celular , Polen , Azúcares
2.
Plant Cell Environ ; 46(5): 1453-1471, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36691352

RESUMEN

High temperatures (HT) cause pollen abortion and poor floret fertility in rice, which is closely associated with excessive accumulation of reactive oxygen species (ROS) in the developing anthers. However, the relationships between accumulation of abscisic acid (ABA) and ROS, and their effects on tapetum-specific programmed cell death (PCD) in HT-stressed anthers are poorly characterised. Here, we determined the spatiotemporal changes in ABA and ROS levels, and their relationships with tapetal PCD under HT exposure. Mutants lacking ABA-activated protein kinase 2 (SAPK2) functions and exogenous ABA treatments were used to explore the effects of ABA signalling on the induction of PCD and ROS accumulation during pollen development. HT-induced pollen abortion was tightly associated with ABA accumulation and oxidative stress. The higher ABA level in HT-stressed anthers resulted in the earlier initiation of PCD induction and subsequently abnormal tapetum degeneration by activating ROS accumulation in developing anthers. Interactions between SAPK2 and DEAD-box ATP-dependent RNA helicase elF4A-1 (RH4) were required for ABA-induced ROS generation in developing anthers. The OsSAPK2 knockout mutants showed the impaired PCD responses in the absence of HT. However, the deficiency of SAPK2 functions did not suppress the ABA-mediated ROS generation in HT-stressed anthers.


Asunto(s)
Oryza , Especies Reactivas de Oxígeno/metabolismo , Oryza/fisiología , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/genética , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Polen/fisiología , Apoptosis/genética , Respuesta al Choque Térmico , Regulación de la Expresión Génica de las Plantas
3.
Appl Biochem Biotechnol ; 172(2): 561-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24101560

RESUMEN

Fungi had become the main resource of polyunsaturated fatty acids, especially linoleic acid. The research studied the effects and mechanism of selenium on polyunsaturated fatty acids of Diasporangium jonesianum. The results showed that selenium could significantly increase the yields of linoleic acid. In contrast, the growth and γ-linolenic acid yield of D. jonesianum was decreased under selenium treatments. Δ6-Fatty acid desaturase gene of D. jonesianum was investigated in this research. Sequence analysis indicated that this cDNA sequence encoded 235 amino acids. The conserved region of Δ6-fatty acid desaturase included three conserved histidine-rich domain, hydropathy profile, and was rich in disulfide bonds. This study showed that selenium may in discriminatively substitute S and incorporate selenium-amino acids into the desaturase that the conformation of enzyme active sites was impacted which leaded to the inhibition of the convert of linoleic acid to γ-linolenic acid and the over accumulation of linoleic acid. Selenium might enhance the fatty acid contents of fungi through influencing the desaturase structure.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Oomicetos/efectos de los fármacos , Oomicetos/metabolismo , Selenio/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Secuencia Conservada , Electroforesis en Gel de Agar , Interacciones Hidrofóbicas e Hidrofílicas , Linoleoil-CoA Desaturasa/química , Linoleoil-CoA Desaturasa/genética , Linoleoil-CoA Desaturasa/metabolismo , Datos de Secuencia Molecular , Oomicetos/enzimología , Oomicetos/crecimiento & desarrollo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA