Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37959856

RESUMEN

Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERß), although with a lower affinity than that of estradiol. Despite considerable work, the effects of genistein are not well established yet. This review aims to clarify the role of genistein on female and male reproductive functions in mammals. In females, at a high dose, genistein diminishes the ovarian activity regulating several pathway molecules, such as topoisomerase isoform I and II, protein tyrosine kinases (v-src, Mek-4, ABL, PKC, Syk, EGFR, FGFR), ABC, CFTR, Glut1, Glut4, 5α-reductase, PPAR-γ, mitogen-activated protein kinase A, protein histidine kinase, and recently circulating RNA-miRNA. The effect of genistein on pregnancy is still controversial. In males, genistein exerts an estrogenic effect by inducing testosterone biosynthesis. The interaction of genistein with both natural and synthetic endocrine disruptors has a negative effect on testis function. The positive effect of genistein on sperm quality is still in debate. In conclusion, genistein has a potentially beneficial effect on the mechanisms regulating the reproduction of females and males. However, this is dependent on the dose, the species, the route, and the time of administration.


Asunto(s)
Genisteína , Semen , Embarazo , Animales , Masculino , Femenino , Genisteína/farmacología , Semen/metabolismo , Fitoestrógenos/farmacología , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Reproducción , Mamíferos/metabolismo
2.
PLoS One ; 14(6): e0218275, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31199843

RESUMEN

A high standard of physical fitness is an essential characteristic of drug detection dogs because it affects not only their ability to sustain high activity levels but also their attention and olfaction efficiency. Nutritional supplements could improve physical fitness by modulating energy metabolism, oxidative processes, and perceived fatigue. The aim of this study was to investigate the physiological and biochemical changes induced by submaximal exercise on drug detection dogs (German Shepherd breed) and to assess whether a dietary supplement improves their physical fitness. During a drug detection dog training course, seven dogs were fed with a basal diet (Control Group) for three-month period, while a further seven dogs were fed with a basal diet as well as a daily nutritional supplement containing branched-chain and limiting amino acids, carnitine, vitamins, and octacosanol (Treatment Group). At the end of this period, individual physical fitness was assessed by making each subject take a graded treadmill exercise test. A human heart rate monitor system was used to record the dog's heart rate (HR) during the treadmill exercise and the subsequent recovery period. The parameters related to HR were analysed using nonparametric statistics. Blood samples were collected before starting the nutritional supplement treatment, before and after the treadmill exercise and following recovery. Linear mixed models were used. The dietary supplements accelerated HR recovery, as demonstrated by the lower HR after recovery (P<0.05) and Time constants of HR decay (P<0.05), and by the higher Absolute HR Recovered (P<0.05) recorded in the Treatment group compared with the Control dogs. The supplemented dogs showed the lowest concentrations of creatine kinase (CK; P<0.001), aspartate aminotransferase (AST, P<0.05) and non-esterified fatty acids (NEFA; P<0.01) suggesting a reduction in muscle damage and improvement of energy metabolism. These data suggest that this combined supplement can significantly enhance the physical fitness of drug detection dogs.


Asunto(s)
Condicionamiento Físico Animal/fisiología , Aptitud Física/fisiología , Animales , Creatina Quinasa/sangre , Dieta , Suplementos Dietéticos , Perros , Prueba de Esfuerzo/métodos , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Músculo Esquelético/fisiología
3.
PLoS One ; 13(8): e0202929, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138385

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder for which the current medical therapy is not completely effective. Bovine colostrum (BC) is a biological fluid rich in bioactive molecules that may have beneficial effects on several gastrointestinal disorders. The objectives of this study were to assess the preventive effects of BC supplementation in a mouse model of 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced colitis using a multidisciplinary approach. Specifically, the following parameters were evaluated: (i) disease activity index (DAI), (ii) histological score, (iii) expression levels of TLR4, anti- and pro-inflammatory cytokines, and (iv) count of some bacterial species of the intestinal microbiota. Mice received a daily suspension of BC (BC group, n = 12) or saline solution (control, CN group, n = 12) for 21 days before the intrarectal inoculation with 1% of TNBS solution. BC was well tolerated and did not induce any histological damage or clinical symptoms. After TNBS treatment, BC group showed a reduction of body weight (BW) loss (P<0.01) and histological score (P<0.05) compared to CN. Moreover, the expression levels of TLR4 (P<0.05), IL-1ß (P<0.001), IL-8 (P<0.001), and IL-10 (P<0.001) were lower in mice administered with BC, while the concentrations of TNF-α did not show any differences between groups. Finally, the supplementation with BC resulted in a differential response to TNBS treatment in the bacterial count. In CN group, E. coli and Enterococci increased (P<0.001), while Anaerobes (P<0.01), Lactobacilli, and Bifidobacteria (P<0.001) reduced. Conversely, no significant changes in bacterial load were found after the inoculation of TNBS in BC pre-treated mice. This study confirms that TNBS-induced colitis model in mice is useful for studying the mechanisms involved in IBD pathogenesis and shows that pre-treatment with BC reduces the intestinal damages and clinical signs of the colitis. Molecular mechanisms and intestinal microflora could be involved in the protective effect of colostrum.


Asunto(s)
Colitis/prevención & control , Calostro , Sustancias Protectoras/uso terapéutico , Animales , Carga Bacteriana , Bovinos , Colitis/inducido químicamente , Citocinas/metabolismo , Microbioma Gastrointestinal , Masculino , Ratones , Receptor Toll-Like 4/metabolismo , Ácido Trinitrobencenosulfónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA