Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Front Oncol ; 11: 656804, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336653

RESUMEN

BACKGROUND: The ongoing treatment modalities for breast cancer (BC) primarily rely on the expression status of ER, PR and HER-2 receptors in BC tissues. Our strategy of chemosensitization provides new insights to counter chemoresistance, a major obstacle that limits the benefits of chemotherapy of mammary cancers. METHODS: By utilizing a murine breast cancer model employing NSG mice bearing orthotopic triple-negative breast cancer (TNBC) xenografts, we have evaluated the ability of phytochemical curcumin in chemosensitizing BC to 5-Fluorouracil (5-FU) chemotherapy and the differential modulations of cellular events in response to this strategy, independent of their receptor status. RESULTS: A significant synergistic antitumor potential was observed in the murine model with a sub-optimal dose treatment of 5-FU plus curcumin, as evaluated by a reduction in the tumor-related parameters. We authenticated the pivotal role of thymidylate synthase (TS) in regulating the 5-FU-curcumin synergism using the TNBC pre-clinical model. Our study also confirmed the pharmacological safety of this chemotherapeutic plus phytoactive combination using acute and chronic toxicity studies in Swiss albino mice. Subsequently, the molecular docking analysis of curcumin binding to TS demonstrated the affinity of curcumin towards the cofactor-binding site of TS, rather than the substrate-binding site, where 5-FU binds. Our concomitant in vivo and in silico evidence substantiates the superior therapeutic index of this combination. CONCLUSION: This is the first-ever pre-clinical study portraying TS as the critical target of combinatorial therapy for mammary carcinomas and therefore we recommend its clinical validation, especially in TNBC patients, who currently have limited therapeutic options.

3.
Gastroenterology ; 144(1): 134-144.e6, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23041331

RESUMEN

BACKGROUND & AIMS: A fraction of gastrointestinal stromal tumor (GIST) cells overexpress the platelet-derived growth factor receptor (PDGFR)A, although most overexpress KIT. It is not known if this is because these receptor tyrosine kinases have complementary oncogenic potential, or because of heterogeneity in the cellular origin of GIST. Little also is known about why Hedgehog (HH) signaling is activated in some GIST. HH binds to and inactivates the receptor protein patched homolog (PTCH). METHODS: Ptch was conditionally inactivated in mice (to achieve constitutive HH signaling) using a Cre recombinase regulated by the lysozyme M promoter. Cre-expressing cells were traced using R26R-LacZ reporter mice. Tumors were characterized by in situ hybridization, immunohistochemistry, immunoblot, and quantitative reverse-transcriptase polymerase chain reaction analyses. Cell transformation was assessed by soft agar assay. RESULTS: Loss of Ptch from lysozyme M-expressing cells resulted in the development of tumors of GIST-like localization and histology; these were reduced when mice were given imatinib, a drug that targets KIT and PDGFRA. The Hh signaling pathway was activated in the tumor cells, and Pdgfrα, but not Kit, was overexpressed and activated. Lineage tracing revealed that Cre-expressing intestinal cells were Kit-negative. These cells sometimes expressed Pdgfrα and were located near Kit-positive interstitial cells of Cajal. In contrast to KIT, activation of PDGFRA increased anchorage-independent proliferation and was required for tumor formation in mice by cells with activated HH signaling. CONCLUSIONS: Inactivation of Ptch in mice leads to formation of GIST-like tumors that express Pdgfrα, but not Kit. Activation of Pdgfrα signaling appears to facilitate tumorigenesis.


Asunto(s)
Neoplasias Gastrointestinales/genética , Tumores del Estroma Gastrointestinal/metabolismo , Proteínas Hedgehog/genética , Leiomiosarcoma/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Superficie Celular/genética , Animales , Benzamidas , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Expresión Génica , Genotipo , Proteínas Hedgehog/metabolismo , Humanos , Mesilato de Imatinib , Integrasas/genética , Integrasas/metabolismo , Mucosa Intestinal/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Leiomiosarcoma/metabolismo , Ratones , Muramidasa/genética , Muramidasa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Patched , Receptor Patched-1 , Piperazinas/uso terapéutico , Regiones Promotoras Genéticas , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Receptores de Superficie Celular/metabolismo , Transducción de Señal/genética , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA