Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902018

RESUMEN

Sulfur-containing amino acids methionine (Met), cysteine (Cys) and taurine (Tau) are common dietary constituents with important cellular roles. Met restriction is already known to exert in vivo anticancer activity. However, since Met is a precursor of Cys and Cys produces Tau, the role of Cys and Tau in the anticancer activity of Met-restricted diets is poorly understood. In this work, we screened the in vivo anticancer activity of several Met-deficient artificial diets supplemented with Cys, Tau or both. Diet B1 (6% casein, 2.5% leucine, 0.2% Cys and 1% lipids) and diet B2B (6% casein, 5% glutamine, 2.5% leucine, 0.2% Tau and 1% lipids) showed the highest activity and were selected for further studies. Both diets induced marked anticancer activity in two animal models of metastatic colon cancer, which were established by injecting CT26.WT murine colon cancer cells in the tail vein or peritoneum of immunocompetent BALB/cAnNRj mice. Diets B1 and B2B also increased survival of mice with disseminated ovarian cancer (intraperitoneal ID8 Tp53-/- cells in C57BL/6JRj mice) and renal cell carcinoma (intraperitoneal Renca cells in BALB/cAnNRj mice). The high activity of diet B1 in mice with metastatic colon cancer may be useful in colon cancer therapy.


Asunto(s)
Aminoácidos Sulfúricos , Carcinoma de Células Renales , Neoplasias del Colon , Neoplasias Renales , Neoplasias Ováricas , Ratones , Animales , Femenino , Humanos , Aminoácidos Sulfúricos/metabolismo , Caseínas , Leucina , Ratones Endogámicos C57BL , Metionina/metabolismo , Cisteína/metabolismo , Dieta , Taurina/metabolismo , Racemetionina , Lípidos
2.
Nutrients ; 14(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014884

RESUMEN

New therapies are needed to improve the low survival rates of patients with metastatic colon cancer. Evidence suggests that amino acid (AA) restriction can be used to target the altered metabolism of cancer cells. In this work, we evaluated the therapeutic potential of selective AA restriction in colon cancer. After observing anticancer activity in vitro, we prepared several artificial diets and evaluated their anticancer activity in two challenging animal models of metastatic colon cancer. These models were established by injecting CT26.WT murine colon cancer cells in the peritoneum (peritoneal dissemination) or in the tail vein (pulmonary metastases) of immunocompetent BALB/cAnNRj mice. Capecitabine, which is a first-line treatment for patients with metastatic colon cancer, was also evaluated in these models. Mice fed diet TC1 (a diet lacking 10 AAs) and diet TC5 (a diet with 6% casein, 5% glutamine, and 2.5% leucine) lived longer than untreated mice in both models; several mice survived the treatment. Diet TC5 was better than several cycles of capecitabine in both cancer models. Cysteine supplementation blocked the activity of diets TC1 and TC5, but cysteine restriction was not sufficient for activity. Our results indicated that artificial diets based on selective AA restriction have therapeutic potential for colon cancer.


Asunto(s)
Neoplasias del Colon , Neoplasias del Recto , Aminoácidos/metabolismo , Animales , Capecitabina/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Cisteína/uso terapéutico , Dieta , Ratones
3.
Nat Prod Res ; 33(23): 3454-3458, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29842791

RESUMEN

Since plants are an important source of anticancer drugs, we have carried out a random screening for selective anticancer activity of 57 extracts from 45 plants collected in Grazalema Natural Park, an area in the South of Spain of high plant diversity and endemism. Using lung cancer cells (A549) and lung non-malignant cells (MRC-5), we found that several extracts were more cytotoxic and selective against the cancer cells than the standard anticancer agent cisplatin. Five active extracts were further tested in cancer and normal cell lines from other tissues, including three skin cell lines with increasing degree of malignancy. An extract from the leaves of Daphne laureola L. (Thymelaeaceae) showed a striking potency and selectivity on lung cancer cells and leukemia cells; the IC50 values against these cancer cells were approximately 10,000-fold lower than against the normal cells. Daphnane-type diterpene orthoesters may be responsible for this highly selective anticancer activity.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Daphne/química , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/farmacología , Células A549 , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Humanos , Leucemia/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , España , Thymelaeaceae/química
4.
Toxins (Basel) ; 8(7)2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27399778

RESUMEN

Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee.


Asunto(s)
Ácidos Cafeicos/toxicidad , Café/toxicidad , Daño del ADN , Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Anemia de Fanconi/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Histonas/metabolismo , Humanos , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA