Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nutrients ; 15(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513512

RESUMEN

Soccer is a team sport that requires players to process a significant amount of information quickly and respond with both speed and accuracy to the ever-changing demands of the game. As such, success in soccer depends not only on physical attributes but also on cognitive abilities such as perception and decision-making. The aim of the current study was to investigate the acute effects of caffeine ingestion on Stroop test performance before and after repeated small-sided games (SSG) in professional soccer players. Twelve professional male soccer players (29 ± 4.1 years; 78.1 ± 7.7 kg body mass) participated in this study. A randomized crossover double-blind placebo-controlled trial was used. Caffeine (5 mg.kg-1) or a placebo was ingested 45 min before a protocol consisting of five 5 min SSG with 1 min rest intervals. A computerized version of the colour Stroop test was completed immediately before and after the exercise protocol. During the Stroop test, words appeared on the computer screen in three different ways: (i) neutral words (neutral condition); (ii) correspondent colour (i.e., "red" painted in red; congruent condition), or; (iii) different colour (i.e., "red" painted in green; incongruent condition). The incongruent condition aimed to cause the interference effect, as the colour and the word did not match. Ratings of perceived exertion (RPE) were assessed after each SSG. RPE increased during the five sets of the SSG protocol (p < 0.001), without differences between the caffeine and placebo trials. The soccer-specific exercise protocol promoted a faster response during the Stroop test (two-way ANOVA main effect for SSG protocol: p < 0.05), with no differences in accuracy (p > 0.05). Caffeine ingestion resulted in slower reaction time during the Stroop test during the congruent and neutral trials but not during the incongruent trial (two-way ANOVA main effect for supplementation: p = 0.009, p = 0.045, and p = 0.071, respectively). Accuracy was lower in the caffeine trial in congruent and incongruent trials (p < 0.05 caffeine vs. placebo both on the pre- and post-SSG protocol). In conclusion, a soccer-specific exercise protocol improved the Stroop test performance in professional soccer players, but acute caffeine ingestion (5 mg.kg-1) was detrimental.


Asunto(s)
Rendimiento Atlético , Fútbol , Humanos , Masculino , Cafeína/farmacología , Fútbol/fisiología , Estudios Cruzados , Rendimiento Atlético/fisiología , Cognición , Ingestión de Alimentos
2.
Nutrients ; 14(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35565741

RESUMEN

The effect of caffeine on mitigating exercise-induced muscle damage (EIMD) is still poorly understood, but it was hypothesized that caffeine could contribute to decreasing delayed onset muscle soreness, attenuating temporary loss of strength, and reducing circulating levels of blood markers of muscle damage. However, evidence is not conclusive and beneficial effects of caffeine ingestion on EIMD are not always observed. Factors, such as the type of exercise that induces muscle damage, supplementation protocol, and type of marker analyzed contribute to the differences between the studies. To expand knowledge on the role of caffeine supplementation in EIMD, this systematic review aimed to investigate the effect of caffeine supplementation on different markers of muscle damage. Fourteen studies were included, evaluating the effect of caffeine on indirect muscle damage markers, including blood markers (nine studies), pain perception (six studies), and MVC maximal voluntary contraction force (four studies). It was observed in four studies that repeated administration of caffeine between 24 and 72 h after muscle damage can attenuate the perception of pain in magnitudes ranging from 3.9% to 26%. The use of a single dose of caffeine pre-exercise (five studies) or post-exercise (one study) did not alter the circulating blood levels of creatine kinase (CK). Caffeine supplementation appears to attenuate pain perception, but this does not appear to be related to an attenuation of EIMD, per se. Furthermore, the effect of caffeine supplementation after muscle damage on strength recovery remains inconclusive due to the low number of studies found (four studies) and controversial results for both dynamic and isometric strength tests.


Asunto(s)
Cafeína , Mialgia , Biomarcadores , Cafeína/farmacología , Ingestión de Alimentos , Ejercicio Físico/fisiología , Humanos , Músculo Esquelético , Músculos
3.
Nutrients ; 14(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406079

RESUMEN

In soccer, physical, tactical, and decision-making processes are highly important facets of successful performance. Caffeine has well established effects for promoting both physical and cognitive performance, but the translation of such benefits specifically for soccer match play is not well established. This study examined the effects of acute caffeine ingestion on tactical performance during small-sided games (SSG) in professional soccer players. Nineteen soccer players (22 ± 4 years) underwent a randomized, counterbalanced, crossover, double-blind placebo-controlled trial. The protocol consisted of 5 bouts of 5-min SSG with 3 players plus a goalkeeper in each team (3 + GK × 3 + GK) with each SSG separated by 1 min rest intervals. Tactical performance was assessed using the system of tactical assessment in soccer (FUT-SAT). Prior to each experimental trial, participants ingested caffeine (5 mg·kg-1) or a placebo 60 min before the protocol. Overall, caffeine ingestion resulted in an increased ball possession time when compared to the placebo. When the offensive and defensive core principles were analyzed, the results were equivocal. Caffeine resulted in positive effects on some tactical decisions during the protocol, but it was deleterious or promoted no observed effect on other of the core tactical principles. Caffeine ingestion resulted in less offensive (during SSG3) and defensive (SSG 2, SSG3, and SSG4) errors. Caffeine ingestion also resulted in higher total offensive success during SSG 1 and SSG2, but it was detrimental during SSG3. Additionally, total defensive success was lower for the caffeine conditions during SSG 2 and SSG5 when compared to the placebo. In conclusion, caffeine influenced aspects of tactical decisions in soccer, resulting in fewer offensive and defensive errors, although it may be deleterious considering other tactical parameters. Future studies may clarify the effects of caffeine ingestion on specific decision-making parameters in soccer.


Asunto(s)
Rendimiento Atlético , Fútbol , Rendimiento Atlético/psicología , Cafeína/farmacología , Método Doble Ciego , Ingestión de Alimentos , Humanos , Fútbol/psicología
4.
Nutrients ; 11(6)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242545

RESUMEN

Mixed martial arts (MMA) is a combat sport where competitors utilize strikes (punches, kicks, knees, and elbows) and submission techniques to defeat opponents in a cage or ring. The aim of this study was to investigate the effect of acute caffeine ingestion on punching performance by professional MMA athletes. The study used a double-blind, counterbalanced, crossover design. Eleven professional MMA competitors (27.6 ± 4.3 years and 83.5 ± 7.8 kg of body weight) ingested a dose of caffeine (5 mg·kg-1) or placebo 60 min prior to three sets of punching. Each set consisted of 15 s, at which participants were asked to perform straight punches with maximum strength and frequency with his dominant arm. After each set, a 45 s recovery time was applied. Using a force transducer attached to a cushioned plate, the punch frequency, and mean and maximal punch force was measured. The readiness to invest in both physical (RTIPE) and mental (RTIME) effort was assessed prior to the protocol, and the rating of perceived exertion (RPE) was recorded after. Caffeine ingestion did not result in increased punching frequency, mean and maximum punch force, RTIPE, RTIME, and RPE when compared to the placebo condition. Based on these results, acute caffeine ingestion did not improve punching performance in professional MMA athletes.


Asunto(s)
Atletas , Rendimiento Atlético , Cafeína/administración & dosificación , Estimulantes del Sistema Nervioso Central/administración & dosificación , Artes Marciales , Adulto , Brasil , Estudios Cruzados , Método Doble Ciego , Estado de Salud , Humanos , Masculino , Fuerza Muscular , Factores de Tiempo , Adulto Joven
5.
Life Sci ; 191: 17-23, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28993146

RESUMEN

L-Arginine has emerged as an important supplement for athletes and non-athletes in order to improve performance. Arginine has been extensively used as substrate for nitric oxide synthesis, leading to increased vasodilatation and hormonal secretion. However, the chronic consumption of arginine has been shown to impair insulin sensitivity. In the present study, we aimed to evaluate whether chronic arginine supplementation associated with exercise training would have a beneficial impact on insulin sensitivity. We, therefore, treated Wistar rats for 4weeks with arginine, associated or not with exercise training (treadmill). We assessed the somatotropic activation, by evaluating growth hormone (GH) gene expression and protein content in the pituitary, as well is GH concentration in the serum. Additionally, we evaluate whole-body insulin sensitivity, by performing an insulin tolerance test. Skeletal muscle morpho-physiological parameters were also assessed. Insulin sensitivity was impaired in the arginine-treated rats. However, exercise training reversed the negative effects of arginine. Arginine and exercise training increased somatotropic axis function, muscle mass and body weight gain. The combination arginine and exercise training further decreased total fat mass. Our results confirm that chronic arginine supplementation leads to insulin resistance, which can be reversed in the association with exercise training. We provide further evidence that exercise training is an important tool to improve whole-body metabolism.


Asunto(s)
Arginina/efectos adversos , Suplementos Dietéticos/efectos adversos , Resistencia a la Insulina , Músculo Esquelético/fisiología , Animales , Regulación de la Expresión Génica , Hormona del Crecimiento/análisis , Hormona del Crecimiento/sangre , Hormona del Crecimiento/genética , Insulina/metabolismo , Masculino , Condicionamiento Físico Animal , Esfuerzo Físico , Ratas Wistar
6.
Nutrients ; 8(5)2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27144582

RESUMEN

Several studies have indicated a positive influence of leucine supplementation and aerobic training on the aging skeletal muscle signaling pathways that control muscle protein balance and muscle remodeling. However, the effect of a combined intervention requires further clarification. Thirteen month old CD-1(®) mice were subjected to moderate aerobic exercise (45 min swimming per day with 3% body weight workload) and fed a chow diet with 5% leucine or 3.4% alanine for 8 weeks. Serum and plasma were prepared for glucose, urea nitrogen, insulin and amino acid profile analysis. The white gastrocnemius muscles were used for determination of muscle size and signaling proteins involved in protein synthesis and degradation. The results show that both 8 weeks of leucine supplementation and aerobic training elevated the activity of mTOR (mammalian target of rapamycin) and its downstream target p70S6K and 4E-BP1, inhibited the ubiquitin-proteasome system, and increased fiber cross-sectional area (CSA) in white gastrocnemius muscle. Moreover, leucine supplementation in combination with exercise demonstrated more significant effects, such as greater CSA, protein content and altered phosphorylation (suggestive of increased activity) of protein synthesis signaling proteins, in addition to lower expression of proteins involved in protein degradation compared to leucine or exercise alone. The current study shows moderate aerobic training combined with 5% leucine supplementation has the potential to increase muscle size in fast-twitch skeletal muscle during aging, potentially through increased protein synthesis and decreased protein breakdown.


Asunto(s)
Envejecimiento/efectos de los fármacos , Leucina/farmacología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Envejecimiento/fisiología , Animales , Dieta , Suplementos Dietéticos , Leucina/administración & dosificación , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos
7.
Nutrition ; 30(10): 1097-103, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24751198

RESUMEN

Resistance training is a potent stimulus to increase skeletal muscle mass. The muscle protein accretion process depends on a robust synergistic action between protein intake and overload. The intake of protein after resistance training increases plasma amino acids, which results in the activation of signaling molecules leading to increased muscle protein synthesis (MPS) and muscle hypertrophy. Although both essential and non-essential amino acids are necessary for hypertrophy, the intake of free L-leucine or high-leucine whole proteins has been specifically shown to increase the initiation of translation that is essential for elevated MPS. The literature supports the use of protein intake following resistance-training sessions to enhance MPS; however, less understood are the effects of different protein sources and timing protocols on MPS. The sum of the adaptions from each individual training session is essential to muscle hypertrophy, and thus highlights the importance of an optimal supplementation protocol. The aim of this review is to present recent findings reported in the literature and to discuss the practical application of these results. In that light, new speculations and questions will arise that may direct future investigations. The information and recommendations generated in this review should be of benefit to clinical dietitians as well as those engaged in sports.


Asunto(s)
Proteínas en la Dieta/farmacología , Suplementos Dietéticos , Ejercicio Físico/fisiología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Entrenamiento de Fuerza , Proteínas en la Dieta/metabolismo , Humanos , Hipertrofia , Leucina/metabolismo , Músculo Esquelético/efectos de los fármacos
8.
Amino Acids ; 46(8): 1785-93, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24760587

RESUMEN

Betaine is a methyl derivative of glycine first isolated from sugar beets. Betaine consumed from food sources and through dietary supplements presents similar bioavailability and is metabolized to di-methylglycine and sarcosine in the liver. The ergogenic and clinical effects of betaine have been investigated with doses ranging from 500 to 9,000 mg/day. Some studies using animal models and human subjects suggest that betaine supplementation could promote adiposity reductions and/or lean mass gains. Moreover, previous investigations report positive effects of betaine on sports performance in both endurance- and resistance-type exercise, despite some conflicting results. The mechanisms underlying these effects are poorly understood, but could involve the stimulation of lipolysis and inhibition of lipogenesis via gene expression and subsequent activity of lipolytic-/lipogenic-related proteins, stimulation of autocrine/endocrine IGF-1 release and insulin receptor signaling pathways, stimulation of growth hormone secretion, increased creatine synthesis, increases in protein synthesis via intracellular hyper-hydration, as well as exerting psychological effects such as attenuating sensations of fatigue. However, the exact mechanisms behind betaine action and the long-term effects of supplementation on humans remain to be elucidated. This review aims to describe evidence for the use of betaine as an ergogenic and esthetic aid, and discuss the potential mechanisms underlying these effects.


Asunto(s)
Rendimiento Atlético , Betaína/farmacología , Composición Corporal/efectos de los fármacos , Ejercicio Físico/fisiología , Resistencia Física/efectos de los fármacos , Adiposidad/efectos de los fármacos , Betaína/metabolismo , Betaína/farmacocinética , Disponibilidad Biológica , Creatina/biosíntesis , Suplementos Dietéticos , Hormona del Crecimiento/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Receptor de Insulina/metabolismo
9.
PLoS One ; 7(12): e50390, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23239980

RESUMEN

In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.


Asunto(s)
Glutamina/administración & dosificación , Músculo Esquelético , Biosíntesis de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Suplementos Dietéticos , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas , Ratas , Ratas Wistar , Transducción de Señal
10.
Eur J Appl Physiol ; 112(11): 3905-11, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22415102

RESUMEN

The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.


Asunto(s)
Antioxidantes/metabolismo , Creatina/administración & dosificación , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Creatina/farmacología , Masculino , Ratas , Ratas Wistar , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
11.
Nutrients ; 4(12): 1851-67, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23363994

RESUMEN

Dexamethasone (DEXA) is a potent immunosupressant and anti-inflammatory agent whose main side effects are muscle atrophy and insulin resistance in skeletal muscles. In this context, leucine supplementation may represent a way to limit the DEXA side effects. In this study, we have investigated the effects of a low and a high dose of leucine supplementation (via a bolus) on glucose homeostasis, muscle mass and muscle strength in energy-restricted and DEXA-treated rats. Since the leucine response may also be linked to the administration of this amino acid, we performed a second set of experiments with leucine given in bolus (via gavage) versus leucine given via drinking water. Leucine supplementation was found to produce positive effects (e.g., reduced insulin levels) only when administrated in low dosage, both via the bolus or via drinking water. However, under DEXA treatment, leucine administration was found to significantly influence this response, since leucine supplementation via drinking water clearly induced a diabetic state, whereas the same effect was not observed when supplied via the gavage.


Asunto(s)
Glucemia/metabolismo , Dexametasona/efectos adversos , Glucocorticoides/efectos adversos , Resistencia a la Insulina , Insulina/sangre , Leucina/administración & dosificación , Músculo Esquelético/efectos de los fármacos , Animales , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Homeostasis/efectos de los fármacos , Leucina/farmacología , Leucina/uso terapéutico , Masculino , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Ratas , Ratas Wistar
12.
Eur J Appl Physiol ; 112(7): 2531-7, 2012 07.
Artículo en Inglés | MEDLINE | ID: mdl-22075640

RESUMEN

Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Suplementos Dietéticos , Glucógeno/metabolismo , Fatiga Muscular/fisiología , Fuerza Muscular/fisiología , Valeratos/administración & dosificación , Administración Oral , Animales , Masculino , Tasa de Depuración Metabólica/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
13.
Amino Acids ; 40(4): 1015-25, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20607321

RESUMEN

Amino acids such as leucine and its metabolite α-ketoisocaproate (KIC), are returning to be the focus of studies, mainly because of their anti-catabolic properties, through inhibition of muscle proteolysis and enhancement of protein synthesis. It is clear that these effects may counteract catabolic conditions, as well as enhance skeletal muscle mass and strength in athletes. Moreover, beta-hydroxy-beta-methylbutyrate (HMB) has been shown to produce an important effect in reducing muscle damage induced by mechanical stimuli of skeletal muscle. This review aims to describe the general scientific evidence of KIC and HMB supplementation clinical relevance, as well as their effects (e.g., increases in skeletal muscle mass and/or strength), associated with resistance training or other sports. Moreover, the possible mechanisms of cell signaling regulation leading to increases and/or sparing (during catabolic conditions) of skeletal muscle mass are discussed in detail based on the recent literature.


Asunto(s)
Cetoácidos/administración & dosificación , Leucina/administración & dosificación , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Valeratos/administración & dosificación , Administración Oral , Adulto , Rendimiento Atlético , Composición Corporal , Suplementos Dietéticos , Humanos , Cetoácidos/metabolismo , Leucina/metabolismo , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Entrenamiento de Fuerza , Transducción de Señal/efectos de los fármacos , Valeratos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA