RESUMEN
BACKGROUND: Most very premature newborns (<32 weeks of gestation) receive parenteral nutrition (PN) that is inherently contaminated with peroxides. Oxidative stress induced by PN is associated with bronchopulmonary dysplasia, a main pathological complication in these infants who have weak antioxidant capacity to detoxify peroxides because of their glutathione deficiency. In animals, glutathione supplementation of PN prevented oxidative stress and alveolar loss (the main characteristic of bronchopulmonary dysplasia). Of its two forms-oxidized glutathione (GSSG) and reduced glutathione (GSH)-GSSG was used because of its better stability. However, a 30% loss of GSSG in PN is observed. The potentially high therapeutic benefits of GSSG supplementation on the health of very premature infants make the study of its stability highly important. METHODS: GSSG was incubated in combination with the following components of PN: dextrose, multivitamins, Primene, and Travasol, and with cysteine, cystine, and peroxides, for 24 h. Total glutathione in these solutions was measured 0-24 h after the addition of GSSG. RESULTS: The combination of cysteine and multivitamins caused the maximum loss of glutathione. The stability of GSSG was not affected by multivitamins. The cysteine was responsible for â¼20% of the loss of GSSG; in the presence of multivitamins, the loss reached >70%. Removing the cysteine prevented the degradation of glutathione. CONCLUSION: GSSG reacts with cysteine to form cysteine-glutathione mixed disulfide, another suitable glutathione substrate for preterm neonates. The study confirms that GSSG added to PN can potentially provide a precursor to de novo synthesis of glutathione in vivo.
Asunto(s)
Displasia Broncopulmonar , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/prevención & control , Cisteína , Suplementos Dietéticos , Glutatión/metabolismo , Humanos , Recién Nacido , Estrés Oxidativo , Nutrición Parenteral , PeróxidosRESUMEN
The metabolism of DNA methylation is reported to be sensitive to oxidant molecules or oxidative stress. Hypothesis: early-life oxidative stress characterized by the redox potential of glutathione influences the DNA methylation level. The in vivo study aimed at the impact of modulating redox potential of glutathione on DNA methylation. Newborn guinea pigs received different nutritive modalities for 4 days: oral nutrition, parenteral nutrition including lipid emulsion Intralipid (PN-IL) or SMOFLipid (PN-SF), protected or not from ambient light. Livers were collected for biochemical determinations. Redox potential (p < 0.001) and DNA methylation (p < 0.01) were higher in PN-infused animals and even higher in PN-SF. Their positive correlation was significant (r2 = 0.51; p < 0.001). Methylation activity was higher in PN groups (p < 0.01). Protein levels of DNA methyltransferase (DNMT)-1 were lower in PN groups (p < 0.01) while those of both DNMT3a isoforms were increased (p < 0.01) and significantly correlated with redox potential (r2 > 0.42; p < 0.001). The ratio of SAM (substrate) to SAH (inhibitor) was positively correlated with the redox potential (r2 = 0.36; p < 0.001). In conclusion, early in life, the redox potential value strongly influences the DNA methylation metabolism, resulting in an increase of DNA methylation as a function of increased oxidative stress. These results support the notion that early-life oxidative stress can reprogram the metabolism epigenetically. This study emphasizes once again the importance of improving the quality of parenteral nutrition solutions administered early in life, especially to newborn infants. Abbreviation of Title: Parenteral nutrition and DNA methylation.
Asunto(s)
Metilación de ADN , Glutatión/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Emulsiones/administración & dosificación , Emulsiones/metabolismo , Emulsiones/farmacología , Aceites de Pescado/administración & dosificación , Aceites de Pescado/metabolismo , Aceites de Pescado/farmacología , Cobayas , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Masculino , Aceite de Oliva/administración & dosificación , Aceite de Oliva/metabolismo , Aceite de Oliva/farmacología , Nutrición Parenteral , Fosfolípidos/administración & dosificación , Fosfolípidos/metabolismo , Fosfolípidos/farmacología , Aceite de Soja/administración & dosificación , Aceite de Soja/metabolismo , Aceite de Soja/farmacología , Triglicéridos/administración & dosificación , Triglicéridos/metabolismo , Triglicéridos/farmacologíaRESUMEN
Peroxides contaminating parenteral nutrition (PN) limit the use of methionine as a precursor of cysteine. Thus, PN causes a cysteine deficiency, characterized by low levels of glutathione, the main molecule used in peroxide detoxification, and limited growth in individuals receiving long-term PN compared to the average population. We hypothesize that glutathione supplementation in PN can be used as a pro-cysteine that improves glutathione levels and protein synthesis and reduces oxidative stress caused by PN. One-month-old guinea pigs (7-8 per group) were used to compare glutathione-enriched to a non-enriched PN, animals on enteral nutrition were used as a reference. PN: Dextrose, amino acids (Primene), lipid emulsion (Intralipid), multivitamins, electrolytes; five-day infusion. Glutathione (GSH, GSSG, redox potential) and the incorporation of radioactive leucine into the protein fraction (protein synthesis index) were measured in the blood, lungs, liver, and gastrocnemius muscle. Data were analysed by ANOVA; p < 0.05 was considered significant. The addition of glutathione to PN prevented the PN-induced oxidative stress in the lungs and muscles and supported protein synthesis in liver and muscles. The results potentially support the recommendation to add glutathione to the PN and demonstrate that glutathione could act as a biologically available cysteine precursor.