Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Appl Acarol ; 90(1-2): 83-98, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37285111

RESUMEN

Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.


Asunto(s)
Acaricidas , Clerodendrum , Repelentes de Insectos , Ixodes , Humanos , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Clerodendrum/química , Repelentes de Insectos/farmacología
2.
Food Funct ; 13(21): 11353-11368, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36260060

RESUMEN

In mammals, the liver is involved in nutrient metabolism and in the regulation of lipid and glucose homeostasis. Multiple studies have described improvements in liver disorders after regular consumption of grape seed extract (GSE). GSE prevents or ameliorates hepatic metabolic dysfunction through AMPK activation, which reduces hepatic lipogenesis while enhancing hepatic lipid oxidation. However, the involvement of ChREBPß and PPARß/δ in these effects has not been fully elucidated. We aim to demonstrate that chronic consumption of GSE at low doses (25 mg kg-1 body weight per day) produces beneficial effects on hepatic glucose and lipid metabolism in young lean Wistar rats and that part of these effects involve ChREBPß inactivation and PPARß/δ activation. In our study, increased concentrations of structurally related (-)-(epi)catechin metabolites and 5-carbon ring fission metabolites were found in the serum of GSE-supplemented rats parallel with the reduction in triglycerides and leptin levels, hepatic cholesterol content and visceral adiposity. GSE supplementation inactivates ChREBP and GSK-3ß, which has been linked to improvements in hepatic lipid and glucose metabolism. Furthermore, the consumption of GSE promotes the expression of Pparß/δ, as well as Pgc-1α and Acox-1, which control hepatic lipid oxidation. Interestingly, pharmacological inhibition of PPARß/δ slowed the induction of Pgc-1α and Acox-1, as well as the activation of AMPK triggered by GSE consumption. Our data suggest that PPARß/δ activation is involved in the metabolic reprogramming effects of chronic GSE consumption in young rats, by modulating, at least, part of the transcriptional programs that maintain hepatic and systemic fuel homeostasis.


Asunto(s)
Extracto de Semillas de Uva , Metabolismo de los Lípidos , Hígado , PPAR delta , PPAR-beta , Animales , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Suplementos Dietéticos , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Lípidos , Hígado/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR-beta/genética , PPAR-beta/metabolismo , Ratas Wistar
3.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924880

RESUMEN

The altered function of adipose tissue can result in obesity, insulin resistance, and its metabolic complications. Leptin, acting on the central nervous system, modifies the composition and function of adipose tissue. To date, the molecular changes that occur in epididymal white adipose tissue (eWAT) during chronic leptin treatment are not fully understood. Herein we aimed to address whether PPARß/δ could mediate the metabolic actions induced by leptin in eWAT. To this end, male 3-month-old Wistar rats, infused intracerebroventricularly (icv) with leptin (0.2 µg/day) for 7 days, were daily co-treated intraperitoneally (ip) without or with the specific PPARß/δ receptor antagonist GSK0660 (1 mg/kg/day). In parallel, we also administered GSK0660 to control rats fed ad libitum without leptin infusion. Leptin, acting at central level, prevented the starvation-induced increase in circulating levels of FGF21, while induced markedly the endogenous expression of FGF21 and browning markers of eWAT. Interestingly, GSK0660 abolished the anorectic effects induced by icv leptin leading to increased visceral fat mass and reduced browning capacity. In addition, the pharmacological inhibition of PPARß/δ alters the immunomodulatory actions of central leptin on eWAT. In summary, our results demonstrate that PPARß/δ is involved in the up-regulation of FGF21 expression induced by leptin in visceral adipose tissue.


Asunto(s)
Tejido Adiposo Blanco/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Leptina/fisiología , PPAR gamma/metabolismo , PPAR-beta/metabolismo , Animales , Hipotálamo/metabolismo , Infusiones Intraventriculares , Proteínas Klotho , Masculino , Proteínas de la Membrana/metabolismo , PPAR gamma/antagonistas & inhibidores , PPAR-beta/antagonistas & inhibidores , Ratas Wistar , Sulfonas , Tiofenos
4.
Sci Rep ; 10(1): 11265, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647290

RESUMEN

Microbial detoxification has been proposed as a new alternative for removing toxins and pollutants. In this study, the biodetoxification activities of yeasts against aflatoxin B1 and zinc were evaluated by HPLC and voltammetric techniques. The strains with the best activity were also subjected to complementary assays, namely biocontrol capability and heavy-metal resistance. The results indicate that the detoxification capability is toxin- and strain-dependent and is not directly related to cell growth. Therefore, we can assume that there are some other mechanisms involved in the process, which must be studied in the future. Only 33 of the 213 strains studied were capable of removing over 50% of aflatoxin B1, Rhodotrorula mucilaginosa being the best-performing species detected. As for zinc, there were 39 strains that eliminated over 50% of the heavy metal, with Diutina rugosa showing the best results. Complementary experiments were carried out on the strains with the best detoxification activity. Biocontrol tests against mycotoxigenic moulds showed that almost 50% of strains had an inhibitory effect on growth. Additionally, 53% of the strains grew in the presence of 100 mg/L of zinc. It has been proven that yeasts can be useful tools for biodetoxification, although further experiments must be carried out in order to ascertain the mechanisms involved.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales/química , Metales Pesados/química , Levaduras/metabolismo , Aflatoxina B1/química , Cromatografía Líquida de Alta Presión , Inocuidad de los Alimentos , Pichia/metabolismo , Rhodotorula/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Aguas Residuales , Zinc/química
5.
Food Chem ; 310: 125917, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31835218

RESUMEN

The purpose of this research was the development of functional edible oils with potential health promoting effects, enriched with phenolic-rich extracts obtained from pistachio and walnut. A high phenolic content, 10860 mg/kg and 7030 mg/kg in walnut and pistachio kernels respectively, with a corresponding strong radical scavenging effect (DPPH, 106 and 20 mmol/kg Trolox) were found. The remarkable antioxidant capacity of the phenolic-rich extracts prepared form walnut (255 mol/kg Trolox, measured by DPPH, 1500 times higher than its kernel) and pistachio (13 mol/kg, 630 times higher) makes them good candidates to evaluate their potential as bioactive ingredients. In the different enriched edible oils studied, a phenolic concentration of 340-570 mg/kg has been reached, showing the functional oils a great antioxidant activity, which was apparently much higher when walnut extracts were employed (e.g. 54 mmol/kg Trolox, as DPPH).


Asunto(s)
Juglans/química , Pistacia/química , Extractos Vegetales/química , Aceites de Plantas/química , Antioxidantes/análisis , Antioxidantes/química , Fenoles/análisis , Fenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA